
Physica 22D (1986) 385-399
North-Holland, Amsterdam

APPROACHES TO COMPLEXITY ENGINEERING *

Stephen WOLFRAM**
The Institute for Advanced Study, Princeton, NJ 08540, USA

Principles for designing complex systems with specified forms of behaviour are discussed. Multiple scale cellular automata
are suggested as dissipative dynamical systems suitable for tasks such as pattern recognition. Fundamental aspects of the
engineering of such systems are characterized using computation theory, and some practical procedures are discussed.

The capabilities of the brain and many other
natural systems go far beyond those of any artifi­
cial systems so far constructed by conventional
engineering means. There is however extensive
evidence that at a functional level, the basic com­
ponents of such complex natural systems are quite
simple, and could for example be emulated with a
variety of technologies. But how large numbers of
these components can act together to perform
complex tasks is not yet known. There are prob­
ably some rather general principles which govern
such overall behaviour, and allow it to be moulded
to achieve particular goals. If these principles could
be found and applied, they would make new forms
of engineering possible. This paper discusses some
approaches to such forms of engineering with
complex systems. The emphasis is on general con­
cepts and analogies. But some of the specific sys­
tems discussed should nevertheless be amenable to
implementation and detailed analysis.

In conventional engineering or computer pro­
gramming, systems are built to achieve their goals
by following strict plans, which specify the de­
tailed behaviour of each of their component parts.
Their overall behaviour must always be simple
enough that complete prediction and often also
analysis is possible. Thus for example motion in
conventional mechanical engineering devices is

* Loosely based on an invited talk entitled "Cellular au­
tomaton engineering" given at the conference.

**Address from August 1986: Center for Complex Systems
Research, University of Illinois, IL 61801, USA.

usually constrained to be simply periodic. And in
conventional computer programming, each step
consists of a single operation on a small number
of data elements. In both of these cases, much
more complex behaviour could be obtained from
the basic components, whether mechanical or logi­
cal, but the principles necessary to make use of
such behaviour are not yet known.

Nature provides many examples of systems
whose basic components are simple, but whose
overall behaviour is extremely complex. Mathe­
matical models such as cellular automata (e.g. [1])
seem to capture many essential features of such
systems, and provide some understanding of the
basic mechanisms by which complexity is pro­
duced for example in turbulent fluid flow. But
now one must use this understanding to design
systems whose complex behaviour can be con­
trolled and directed to particular tasks. From sci­
entific descriptions of the behaviour observed in
complex systems, one must learn how to engineer
complex systems with specified behaviour.

Complexity in natural systems typically arises
from the collective effect of a very large number of
components. It is often essentially impossible to
predict the detailed behaviour of anyone particu­
lar component, or in fact the precise behaviour of
the whole system. But the system as a whole may
nevertheless show definite overall behaviour, and
this behaviour usually has several important fea­
tures.

Perhaps most important, it is robust, and is
typically unaffected by perturbations or failures of

0167-2789/86/$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)

386 s. Wolfram / Approaches to complexity engineering

individual components. Thus for example a change
in the detailed initial conditions for the system
usually has little or no effect on the overall out­
come of its evolution (although it may have a large
effect on the detailed behaviour of some individual
elements). The visual system in the brain, for
example, can recognize objects even though there
are distortions or imperfections in the input image.
Its operation is also presumably unaffected by the
failure of a few neurons. In sharp contrast, how­
ever, typical computer programs require explicit
account to be taken of each possible form of
input. In addition, failure of anyone element
usually leads to catastrophic failure of the whole
system.

Dissipation, in one of many forms, is a key
principle which lies behind much of the robustness
seen in natural systems. Through dissipation, only
a few features in the behaviour of a system survive
with time, and others are damped away. Dissipa­
tion is often used to obtain reliable behaviour in
mechanical engineering systems. Many different
initial motions can for example be dissipated away
through viscous damping to bring particular com­
ponents to rest. Such behaviour is typically rep­
resented by a differential equation whose solution
tends to a particular fixed point at large times,
independent of its initial conditions. Any informa­
tion on the particular initial conditions is thus
destroyed by the irreversible evolution of the sys­
tem.

In more complicated systems, there may be
several fixed points, reached from different sets of
initial conditions. This is the case for an idealized
ball rolling on a landscape, with dissipation in the
form of friction. Starting at any initial point, the
ball is "attracted" towards one of the local height
minima in the landscape, and eventually comes to
rest there. The set of initial positions from which
the ball goes to a particular such fixed point can
be considered as the "basin of attraction" for that
fixed point. Each such basin of attraction is
bounded by a "watershed" which typically lies
along ridges in the landscape. Dissipation destroys
detailed information on particular initial condi-

tions, but preserves the knowledge of which basin
of attraction they were in. The evolution of the
system can be viewed as dividing its inputs into
various "categories", corresponding to different
basins of attraction. This operation is the essence
of many forms of pattern recognition: despite
small changes, one must recognize that a particu­
lar input is in a particular category, or matches a
particular pattern. In the example of a ball rolling
on a landscape, the categories correspond to dif­
ferent regions of initial positions. Small changes in
input correspond to small changes in initial posi­
tion.

The state of the system just discussed is given
by the continuous variables representing the posi­
tion of the ball. More familiar examples of pattern
recognition arise in discrete or digital systems,
such as those used for image processing. An image
might be represented by a 256 X 256 array of cells,
each say black or white. Then a simple image
processing operation would be to replace any iso­
lated black cell by a white cell. In this way certain
single cell errors in the images can be removed (or
"damped out"), and classes of images differing
just by such errors can be recognized as equivalent
(e.g. [3]). The process can be considered to have
attractors corresponding to the possible images
without such errors. Clearly there are many of
these attractors, each with a particular basin of
attraction. But in contrast to the example with
continuous variables above, there is no obvious
measure of "distance" on the space of images,
which could immediately be used to determine
which basin of attraction a particular image is in.
Rather the category of an image is best de­
termined by explicit application of the image
processing operation.

Length n sequences of bits can be considered
as corners of an n-dimensional hypercube. The
Hamming distance between two sequences can
then be defined as the number of edges of the
hypercube that must be traversed to get from one
to the other, or, equivalently, the total number of
bits that differ between them. It is possible using
algebraic methods to devise transformations with

*

?

.-

S. Wolfram / Approaches to complexity engineering 387

basins of attraction corresponding to spheres
which enclose all points at a Hamming distance of
at most say two bits from a given point (4). This
allows error-correcting codes to be devised in
which definite messages can be reconstructed even
though they may contain say up to two erroneous
bits.

The transformations used in error-correcting
codes are specially constructed to have basins of
attraction with very simple forms. Most dissipa­
tive transformations, however, yield much more
complicated basins of attraction, which cannot for
example be described by simple scalar quantities
such as distances. The form of these basins of
attraction determines what class of perturbations
do not affect a system, and what classes of inputs
can be recognized as equivalent.

As a first example, consider various idealiza­
tions of the system discussed above consisting of a
ball rolling with friction on a landscape, now
assumed one dimensional. In the approximation
of a point ball, this is equivalent to a particle
moving with damping in a one-dimensional poten­
tial. The attractors for the system are again fixed
points corresponding to minima of the potential.
But the basins of attraction depend substantially
on the exact dynamics assumed. In the case of
very large friction, the particle satisfies a differen­
tial equation in which velocity is proportional to
force, and force is given by the gradient of the
potential. With zero initial velocity, the basins of
attraction in this case have a simple form, sep­
arated by boundaries at the position of maxima in
the potential. In a more realistic model, with finite
friction and the inertia of the ball included, the
system becomes similar to a Roulette wheel. And
in this case it is known that the outcome is a
sensitive function of the precise initial conditions.
As a consequence, the basins of attraction corre­
sponding for example to different holes around
the wheel must have a complicated, interdigitated,
form.

Complicated basin boundaries can also be ob­
tained with simplified equations of motion. As one
example, one can take time to be discrete, and

assume that the potential has the form of a poly­
nomial, so that the differential equation is ap­
proximated by an iterated polynomial mapping.
The sequence of positions found from this map­
ping may overshoot the minimum, and for some
values of parameters may in fact never converge
to it. The region of initial conditions which evolve
to a particular attractor may therefore be com­
plicated. In the case for example of the complex
iterated mapping z ~ z 2 + c, the boundary of the
basin of attraction (say for the attractor z = (0) is
a Julia set, and has a very complicated fractal
form (e.g. (5)).

The essentials of the problem of finding basins
of attraction already arise in the problem of find­
ing what set of inputs to a function of discrete
variables yields a particular output. This problem
is known in general to be computationally very
difficult. In fact, the satisfiability problem of de­
termining which if any assignments of truth values
to n variables in a Boolean expression make the
whole expression true is NP complete, and can
presumably be solved in general essentially only
by explicitly testing all 2 n possible assignments
(e.g. (6)). For some functions with a simple, per­
haps algebraic, structure, an efficient inversion
procedure to find appropriate inputs may exist.
But in general no simple mathematical formula
can describe the pattern of inputs: they will sim­
ply seem random (d. (7)).

Cellular automata provide many realistic exam­
ples of this problem. Cellular automata consist of
a lattice of sites with discrete values updated in
discrete steps according to a fixed rule which
depends on their neighbours. The image processing
operation mentioned above can be considered as a
simple example of a single step in the evolution of
a particular two-dimensional cellular automaton
(cf. (8)). Other cellular automata show much more
complicated behaviour, and it seems in fact that
appropriate cellular automata capture the essential
features of many complex systems in nature (e.g.
[1)). The problems of complexity engineering ad­
dressed in nature are thus presumably already
present in cellular automata.

388 S. Wolfram / Approaches to complexity engineering

Most cellular automata are dissipative, or irre­
versible, so that after many steps, they evolve to
attractors which contain only a subset of their
states. In some cellular automata (usually iden­
tified as classes 1 and 2), these attractors are fixed
points (or limit cycles), and small changes in ini­
tial conditions are usually damped out [9]. Other
cellular automata (classes 3 and 4), however, never
settle down to a fixed state with time, but instead
continue to show complicated, chaotic, behaviour.
Such cellular automata are unstable, so that most
initial perturbations grow with time to affect the
detailed configuration of an ever-increasing num­
ber of sites. The statistical properties of the be­
haviour produced is nevertheless robust, and is
unaffected by such perturbations.

It can be shown that the set of fixed points of a
one-dimensional cellular automata consists simply
of all those configurations in which particular
blocks of site values do not appear [10]. This set
forms a (finite complement) regular language, and
can be represented by the set of possible paths
through a certain labelled directed graph [10].
Even when they are not fixed points, the set of
states that can occur after say t time steps in the
evolution of a one-dimensional cellular automaton
in fact also forms a regular language (though not
necessarily a finite complement one). In addition,
the basin of attraction, or in general the set of all
states which evolve after t steps to a given one,
can be represented as a regular language. For class
1 and 2 cellular automata, the size of the minimal
graph for this language stays bounded, or at most
increases like a polynomial with t. For class 3 and
4 cellular automata, however, the graph often in­
creases apparently exponentially with t , so that it
becomes increasingly difficult to describe the basin
of attraction. In general, in fact, the problem of
determining which states evolve to a particular
one after t steps is a generalization of the satisfia­
bility problem for logical function mentioned
above, and is thus NP complete. The basin of
attraction in this case can thus also presumably
only be found by explicit testing of essentially all
0(2t) possible initial configurations (cf. [11 D. Its

form will again often be so complicated as to seem
random. For two-dimensional cellular automata, it
is already NP complete just to find fixed points
(specifically, to find say n X n blocks of sites with
specified boundaries that are invariant under the
cellular automaton rule) [12].

It is typical of complex systems that to de­
termine their behaviour requires extensive compu­
tation. This is a consequence of the fact that the
evolution of the systems themselves typically cor­
responds to a sophisticated computation. In fact,
the evolution of many complex systems is prob­
ably computationally irreducible: it can be found
essentially only by direct simulation, and cannot
be predicted by any short-cut procedure [11, 13].
Such computational irreducibility is a necessary
consequence of the efficient use of computational
resources in a system. Any computational reduci­
bility is a sign of inefficiency, since it implies that
some other system can determine the outcome
more efficiently.

Many systems in nature may well be computa­
tionally irreducible, so that no general predictions
can be made about their behaviour. But if a sys­
tem is to be used for engineering, it must be
possible to determine at least some aspects of its
behaviour. Conventional engineering requires de­
tailed specification of the precise behaviour of
each component in a system. To make use of
complex systems in engineering, one must relax
this constraint, and instead require only some
general or approximate specification of the overall
behaviour of systems.

One goal is to design systems which have par­
ticular attractors. For the example of a ball rolling
on a landscape, this is quite straightforward (cf.
[14D. In one dimension, the landscape could be
given by the polynomial TIJx - xy, where the Xi

are the desired minima, or attractors. This poly­
nomial is explicitly constructed to yield certain
attractors in the dynamics. However, it implies a
particular structure for the basins of attraction. If
the attractors are close to equally spaced, or are
sufficiently far apart, then in fact the boundary of
the basins of attraction for successive attractors

S. Wolfram / Approaches to complex ity engineering 389

will be roughly half way between them. Notice,
however, that as the parameters of the landscape
polynomial are changed, the structure of the at­
tractors and basins of attraction obtained can
change discontinuously, as described by catastro­
phe theory.

For a more complex system, such as a cellular
automaton, it is more difficult to obtain a particu­
lar set of attractors. One approach is to construct
cellular automaton rules which leave particular
sequences invariant [15]. If these sequences are say
of length L, and are arbitrarily chosen, then it
may be necessary to use a cellular automaton rule
which involves a neighbourhood of up to L - 1
sites. The necessary rule is straightforward to con­
struct, but takes about 2L - 1 bits to specify.

Many kinds of complex systems can be consid­
ered as bases for engineering. Conventional en­
gineering suggests some principles to follow. The
most important is the principle of modularity. The
components of a system should be arranged in
some form of hierarchy. Components higher on
the hierarchy should provide overall control for
sets of components lower on the hierarchy, which
can be treated as single units or modules. This
principle is crucial to software engineering, where
the modules are typically subroutines. It is also
manifest in biology in the existence of organs and
definite body parts, apparently mirrored by sub­
routine-like constructs in the genetic code.

An important aspect of modularity is the ab­
straction it makes possible. Once the construction
of a particular module has been determined, the
module can be treated as a single object, and only
its overall behaviour need be considered, wherever
it appears. Modularity thus divides the problem of
constructing or analysing a system into many
levels, potentially making each level manageable.

Modularity is used in essentially all of the sys­
tems to be discussed below. In most cases, there
are just two levels : controlling (master) and con­
trolled (slave) components. The components on
these two levels usually change on different time
scales. The controlling components change at most

slowly, and are often fixed once a system say with
a particular set of attractors has been obtained.
The controlled components change rapidly,
processing input data according to dynamical rules
determined by the controlling components. Such
separation of time scales is common in many
natural and artificial systems. In biology, for ex­
ample, phenotypes of organisms grow by fast
processes, but are determined by genotypes which
seem to change only slowly with time. In software
engineering, computer memory is divided into a
part for "programs", which are supposed to re­
main fixed or change only slowly, and another
part for intermediate data, which changes rapidly.

Even though it is not part of their construction,
many systems seem dynamically to develop a
modular structure, often with arbitrarily many
hierarchical levels arranged say on a balanced tree
[16]. But for engineering purposes, it seems best to
start with systems that are modular from the
outset.

Multiple scale cellular automata provide simple
but quite general examples of such systems. An
ordinary cellular automaton consists of a lattice of
sites, with each site having say k possible values,
updated according to the same definite rule. A
two-scale cellular automaton can be considered to
consist of two lattices, whose site values change on
different characteristic time scales. The values of
the sites on the "slow" lattice control the rules
used at the corresponding sites on the "fast"
lattice. With q possible values for the slow lattice
sites, there is an array of q possible rules for each
site on the fast lattice. Such a two-scale cellular
automaton can always be emulated by specially
chosen configurations in an ordinary cellular au­
tomaton with at most qk possible values at each
site.

If the sites on the slow lattice are fixed, then a
two-scale cellular automaton acts like a dynamic
random field spin system (e.g. [17]), or a spin glass
(e.g. [18]) (cf. [19]). Examples of patterns gener­
ated by cellular automata of this kind are shown
in fig. 1. And if instead the "slow" lattice sites
change rapidly, and take on essentially random

rules 170 240

rules 4 200

rules 90 164

rules 18 90

rules 18 182

I I I. I I ••••••• 11 II II. 1-.111- " I I,·I ... ~I·I~

.... 111 _
~~,.. -. I -"rTTI T T-""'- -,

~§t:~_I.1111

~~
\'S ,',F .

~ .~~; '71

•• 1
Fig. L Patterns generated by two-scale cellular automata with k = 2, q = 2 and r = L The configuration of the slow lattice is fixed in
each case, and is shown at the top. The rule used at a particular site on the fast lattice is chosen from the two rules given according to
the value of the corresponding site on the slow lattice. (The rule numbers are as defined in ref. [20].)

u.>

8

~

~
S::
i:l
;;
"-:...
:g
;:;
'" g.
~
c
" c

~
~
~.

'" '" '!S.
'" '" '" ::;.

'" OQ

S. Wolfram / Approaches to complexity engineering 391

values, perhaps as a result of following a chaotic
cellular automaton rule, then the evolution of the
fast lattice is like that of a stochastic cellular
automaton, or a directed percolation system (e.g.
[21]).

With dissipative dynamics, the evolution of the
fast lattice in a two-scale cellular automaton yields
attractors. The form of these attractors is de­
termined by the control configuration on the slow
lattice. By choosing different slow lattice con­
figurations, it is thus possible to engineer particu­
lar attractor structures.

In a typical case, a two-scale cellular automaton
might be engineered to recognize inputs in differ­
ent categories. Each category would be repre­
sented by a fixed point in the fast lattice
dynamics. The system can then be arranged in
several ways. Assume that the input is a one-di­
mensional symbol sequence (such as a text string).
Then one possibility would be to consider a one­
dimensional cellular automaton whose fixed points
correspond to symbol sequences characteristic of
each category. But if the required fixed points are
arbitrarily chosen, few of them can be specified by
a single slow configuration. If the cellular automa­
ton has N sites, then each fixed point of the fast
lattice is specified by N log2 k bits. A configura­
tion of the slow lattice involves only N log2 q bits.
As a consequence, the number of arbitrarily-cho­
sen fixed points that can be specified is just log q/
log k, a result independent of N.

Usually, however, it is not necessary to give all
N log2 k bits of a fixed point to specify the form
of the attractor for a particular category. The
number of bits actually needed presumably in­
creases with the number of categories. It is com­
mon to find a small number of possible categories
or responses to a wide variety of input data. The
responses can then for example be represented by
the values of a small number of sites on the fast
lattice of a two-scale cellular automaton. The in­
put data can be used to give initial values for a
larger number of sites, possibly a different set. (In
an analogy with the nervous system, some sites
might receive input from afferent nerves while

others, typically smaller in number, might gener­
ate output for efferent nerves.)

A second possibility is to consider a two-dimen­
sional two-scale cellular automaton, in which the
input is specified along a line, and the dynamics of
the fast lattice transfers information only in a
direction orthogonal to this line [22] (d. [23]). This
arrangement is functionally equivalent to a one­
dimensional two-scale cellular automaton in which
the slow lattice configuration changes at each time
step. In its two-dimensional form, the arrange­
ment is very similar to a systolic array [24], or in
fact to a multilayer generalization of standard
modular logic circuits, such a programmable logic
arrays [24]. In an N X M system of this kind, a
single slow lattice configuration can specify
M log q/log k length N fixed points in the fast
configuration (d. [2]).

In the approaches just discussed, input is given
as an initial condition for the fast lattice. An
alternative possibility is that the input could be
given on the slow lattice, and could remain
throughout the evolution of the fast lattice. The
input might for example then specify boundary
conditions for evolution on a two-dimensional fast
lattice. Output could be obtained from the final
configuration of the fast lattice. However, there
will often be several different attractors for the
fast lattice dynamics even given boundary condi­
tions from a particular slow lattice configuration.
Which attractor is reached will typically depend
on the initial conditions for the fast lattice, which
are not specified in this approach. With ap­
propriate dynamics, however, it is nevertheless
possible to obtain almost unique attractors: one
approach is to add probabilistic elements or noise
to the fast lattice dynamics so as to make it
ergodic, with a unique invariant measure corre­
sponding to a definite" phase" [25].

Cellular automata are arranged to be as simple
as possible in their basic microscopic construction.
They are discrete in space and time. Their sites are
all identical, and are arranged on a regular lattice.
The sites have a finite set of possible values, which

392 S. Wolfram / Approaches to complexity engineering

are updated synchronously according to identical
deterministic rules that depend on a few local
neighbours. But despite this microscopic simplic­
ity, the overall macroscopic behaviour of cellular
automata can be highly complex. On a large scale,
cellular automata can for example show con­
tinuum features [12, 26], randomness [7], and
effective long-range interactions [27]. Some cellu­
lar automata are even known to be universal com­
puters [28], and so can presumably simulate any
possible form of behaviour. Arbitrary complexity
can thus arise in cellular automata. But for en­
gineering purposes, it may be better to consider
basic models that are more sophisticated than
cellular automata, and in which additional com­
plexity is included from the outset (cf. [2]).
Multiple scale cellular automata incorporate mod­
ularity, and need not be homogeneous. Further
generalizations can also considered, though one
suspects that in the end none of them will turn out
to be crucial.

First, cellular automaton dynamics is local: it
involves no long-range connections which can
transmit information over a large distance in one
step. This allows (one or two-dimensional) cellular
automata to be implemented directly in the simple
planar geometries appropriate, for example, for
very large-scale integrated circuits. Long range
electronic signals are usually carried by wires which
cross in the third dimension to form a complicated
network. (Optical communications may also be
possible.) Such an arrangement is difficult to im­
plement technologically. When dynamically­
changing connections are required, therefore, more
homogeneous switching networks are used, as in
computerized telephone exchanges, or the Connec­
tion Machine computer [29]. Such networks are
typically connected like cellular automata, though
often in three (and sometimes more) dimensions.

Some natural systems nevertheless seem to in­
corporate intrinsic long range connections. Chem­
ical reaction networks are one example: reaction
pathways can give almost arbitrary connectivity in
the abstract space of possible chemical species [30,
31 , 32]. Another example is the brain, where nerves

can carry signals over long distances. In many
cases, the pattern of connectivity chosen seems to
involve many short-range connections, together
with a few long-range ones, like motorways (free­
ways) or trunk lines [33]. It is always possible to
simulate an arbitrary arrangement of long range
connections through sequences of short range con­
nections; but the existence of a few intrinsic long
range connections may make large classes of such
simulations much more efficient [33].

Many computational algorithms seem to involve
arbitrary exchange of data. Thus for example, in
the fast Fourier transform, elements are combined
according to a shuffle-exchange graph (e.g. [29]).
Such algorithms can always be implemented by a
sequence of local operations. But they seem to be
most easily conceived without reference to the
dynamics of data transfer. Indeed, computers and
programming languages have traditionally been
constructed to enforce the idealization that any
piece of data is available in a fixed time (notions
such as registers and pipelining go slightly beyond
this). Conventional computational complexity the­
ory also follows this idealization (e.g. [34]). But in
developing systems that come closer to actual
physical constraints, one must go beyond this
idealization. Several classes of algorithms are
emerging that can be implemented efficiently and
naturally with local communications (e.g. [35]). A
one-dimensional cellular automaton (" iterative
array") can be used for integer multiplication [36].
Two dimensional cellular automata (" systolic
arrays") can perform a variety of matrix manipu­
lation operations [24].

Although the basic rules for cellular automata
are local, the rules are usually applied in syn­
chrony, as if controlled by a global clock. A
generalization would allow asynchrony, so that
different sites could be updated at different times
(e.g. [37]). Only a few sites might, for example, be
updated at each time step. This typically yields
more gradual transitions from one cellular au­
tomaton configuration to another, and can prevent
certain instabilities. Asynchronous updating makes
it more difficult for information to propagate

s. Wolfram / Approaches to complexity engineering 393

through the cellular automaton, and thus tends to
prevent initial perturbations from spreading. As a
result, the evolution is more irreversible and dis­
sipative. Fixed point and limit cycle (class 1 and
2) behaviour therefore become more common.

For implementation and analysis, it is often
convenient to maintain a regular updating sched­
ule. One possibility is to alternate between updates
of even and odd-numbered sites (e.g. [38)). " New"
rather than "old" values for the nearest neighbours
of a particular cell are then effectively used. This
procedure is analogous to the implicit, rather than
explicit, method for updating site values in finite
difference approximations to partial differential
equations (e.g. [39]). It is known often to lead to
better convergence (e.g. [39]). The scheme also
yields, for example, systematic relaxation to ther­
modynamic equilibrium in a cellular automaton
version of the microcanonical Ising model [40):
simultaneous updating of all sites allows un­
damped oscillations in this case [38).

One can also consider systems in which sites are
updated in a random order, perhaps one at a time.
Such systems can often be analysed using" mean
field theory", by assuming that the behaviour of
each individual component is random, with a par­
ticular average (cf. [2)). Statistical predictions can
then often be made from iterations of maps in­
volving single real parameters. As a result, mono­
tonic approach to fixed points is more easily
established.

Random asynchronous updating nevertheless
makes detailed analysis more difficult. Standard
computational procedures usually require definite
ordering of operations, which can be regained in
this case only through mechanisms such as sema­
phores (e.g. [41]), typically at considerable cost.

Rather than introducing randomness into the
updating scheme, one can instead include it di­
rectly in the basic cellular automaton rule. The
evolution of such stochastic cellular automata can
then be analogous to the steps in a Monte Carlo
simulation of a spin system at nonzero tempera­
ture [42). Randomness typically prevents the sys­
tem from being trapped in metastable states, and

can therefore accelerate the approach to equi­
librium.

In most practical implementations, however,
supposedly random sequences must be obtained
from simple algorithms (e.g. [36]). Chaotic cellular
automata can produce sequences with a higher
degree of randomness [7), presumably making ex­
plicit insertion of external randomness unneces­
sary.

Another important simplifying feature of cellu­
lar automata is the assumption of discrete states.
This feature is convenient for implementation by
digital electronic circuits. But many natural sys­
tems seem to involve continuously-variable
parameters. There are usually components, such
as molecules or vesicles of neurotransmitter, that
behave as discrete on certain levels. But very large
numbers of these components can act in bulk, so
that for example only their total concentration is
significant, and this can be considered as an essen­
tially continuous variable. In some systems, such
bulk quantities have simple behaviour, described
say by partial differential equations. But the over­
all behaviour of many cellular automata and other
systems can be sufficiently complex that no such
bulk or average description is adequate. Instead
the evolution of each individual component must
be followed explicitly (cf. [11)).

For engineering purposes, it may nevertheless
sometimes be convenient to consider systems that
involve essentially continuous parameters. Such
systems can for example support cumulative small
incremental changes. In a cellular automaton, the
states of n elements are typically represented by
(!I (n) bits of information. But bulk quantities can
be more efficiently encoded as digital numbers,
with only (!I(log n) bits. There may be some situa­
tions in which data is best packaged in this way,
and manipulated say with arithmetic operations.

A potential advantage of using continuous vari­
ables is the possibility of applying standard
mathematical analysis techniques, as in traditional
mathematical physics. But the advantage is prob­
ably largely illusory. Extensive results can typi­
cally be obtained only when the behaviour of the

394 S. Wolfram / Approaches to complexity engineering

system is too simple to show the complexity re­
quired (d. [43]).

Having selected a basic system, the problem of
engineering then consists in designing or pro­
gramming it to perform particular tasks. The con­
ventional approach is systematically to devise a
detailed step-by-step plan. But such a direct con­
structive approach cannot make the most efficient
use of a complex system.

Logic circuit design provides an example (e.g.
[44]). The task to be performed is the computation
of a Boolean function with n inputs specified by a
truth table. In a typical case, the basic system is a
programmable logic array (PLA): a two-level cir­
cuit which implements disjunctive normal form
(DNF) Boolean expressions, consisting of disjunc­
tions (ORs) of conjunctions (ANDs) of input vari­
ables (possibly negated) [24, 25). The direct
approach would be to construct a circuit which
explicitly tests for each of the 2n cases in the truth
table. The resulting circuit would contain (7)(n2n)
gates. Thus for example, the circuit which yields 1
if two or more of its three inputs Q; are one would
be represented by Ql Q 2Q 3 + QlQ2 a 3 + Ql a2Q 3 +
al Q 2 Q 3' where multiplication represents AND and
addition represents OR. (This function can be
viewed as the k = 2, r = 1 cellular automaton rule
number 232 [20]).

Much smaller circuits are however often suffi­
cient. But direct constructive techniques are not
usually appropriate for finding them. Instead one
uses methods that manipulate the structure of
circuits, without direct regard to the meaning of
the Boolean functions they represent. Many meth­
ods start by extracting prime implicants [44, 45).
Logical functions of n variables can be considered
as colourings of the Boolean n-cube. Prime impli­
cants represent this colouring by decomposing it
into pieces along hyperplanes of different dimen­
sions. Each prime implicant then corresponds to a
single conjunction of input variables: a circuit for
the original Boolean function can be formed from
a disjunction of these conjunctions. This circuit is

typically much smaller than the one obtained by
direct construction. (For the majority function
mentioned above, it is Ql Q 2 + Ql Q 3 + Q 2Q 3.) And
while it performs the same task, it is usually no
longer possible to give an explicit step-by-step
"explanation" of its operation.

A variety of algebraic and heuristic techniques
are used for further simplification of DNF Boolean
expressions [45). But it is in general very difficult
to find the absolutely minimal expression for any
particular function. In principle, one could just
enumerate all possible progressively more com­
plicated expressions or circuits, and find the first
one which reproduces the required function. But
the number of possible circuits grows exponen­
tially with the number of gates, so such an exhaus­
tive search rapidly becomes entirely infeasible. It
can be shown in fact that the problem of finding
the absolute minimal expression is NP hard, sug­
gesting that there can never be a general proce­
dure for it that takes only polynomial time [6).
Exhaustive search is thus effectively the only pos­
sible exact method of solution.

In most cases, however, it is not necessary to
find the absolutely minimal circuit: any suffi­
ciently simple circuit will suffice. As a result, one
can consider methods that find only approxi­
mately minimal circuits.

Most approximation techniques are basically
iterative: they start from one circuit, then succes­
sively make changes which preserve the function­
ality of the circuit, but modify its structure. The
purpose is to find minima in the circuit size or
"cost" function over the space of possible circuits.
The effectiveness of different techniques depends
on the form of the circuit size "landscape".

If the landscape was like a smooth bowl, then
the global minimum could be found by starting at
any point, and systematically descending in the
direction of the local gradient vector. But in most
cases the landscape is presumably more com­
plicated. It could for example be essentially fiat,
except for one narrow hole containing the mini­
mum (like a golf course). In such a case, no simple
iterative procedure could find the minimum.

S. Wolfram / Approaches to complexity engineering 395

Another possibility, probably common in prac­
tice, is that the landscape has a form reminiscent
of real topographical landscapes, with a com­
plicated pattern of peaks and valleys of many
different sizes. Such a landscape might well have a
self similar or fractal form: features seen at differ­
ent magnifications could be related by simple
scalings. Straightforward gradient descent would
always get stuck in local minima on such a land­
scape, and cannot be used to find a global mini­
mum (just as water forms localized lakes on a
topographical landscape). Instead one should use
a procedure which deals first with large-scale fea­
tures, then progressively treats smaller and smaller
scale details.

Simulated annealing is an example of such a
technique [46]. It is based on the gradient descent
method, but with stochastic noise added. The noise
level is initially large, so that all but the largest
scale features of the landscape are smeared out. A
minimum is found at this level. Then the noise
level (" temperature") is reduced, so that smaller
scale features become relevant, and the minimum
is progressively refined. The optimal temperature
variation (" annealing schedule") is probably de­
termined by the fractal dimension of the lands­
cape.

In actual implementations of the simulated an­
nealing technique, the noise will not be truly ran­
dom, but will instead be generated by some
definite, and typically quite simple, procedure. As
a consequence, the whole simulated annealing
computation can be considered entirely determin­
istic. And since the landscape is probably rather
random, simple deterministic perturbations of
paths will probably suffice (cf. [47]).

In the simulated annealing approach, each indi­
vidual "move" might consist of a transformation
involving say two logic gates. An alternative pro­
cedure is first to find the minimal circuit made
from "modules" containing many gates, and then
to consider rearranging progressively smaller sub­
modules. The hierarchical nature of this determin­
istic procedure can again mirror the hierarchical
form of the landscape.

The two approaches just discussed involve itera­
tive improvement of a single solution. One can
also consider approaches in which many candidate
solutions are treated in parallel. Biological evolu­
tion apparently uses one such approach. It gener­
ates a tree of different genotypes, and tests the
" fitness" of each branch in parallel. Unfit branches
die off. But branches that fare well have many
offspring, each with a genotype different by a
small random perturbation ("genetic algorithm"
[48]). These offspring are then in turn tested, and
can themselves produce further offspring. As a
result, a search is effectively conducted along many
paths at once, with a higher density of paths in
regions where the fitness is improving. (This is
analogous to decision tree searching with, say,
a,B-pruning [49].) Random perturbations in the
paths at each generation may prevent getting stuck
in local minima, but on a fractal landscape of the
type discussed above, this procedure seems less
efficient than one based on consideration of pro­
gressively finer details.

In the simplest iterative procedures, the possible
changes made to candidate solutions are chosen
from a fixed set. But one can also imagine modify­
ing the set of possible changes dynamically ' [50]
(cf. [51]). To do this, one must parametrize the
possible changes, and in turn search the space of
possibilities for optimal solutions.

The issues discussed for logic circuit design also
arise in engineering complex systems such as two­
scale cellular automata. A typical problem in this
case is to find a configuration for the slow lattice
that yields particular fixed points for evolution on
the fast lattice. For simple linear rules, for exam­
ple, a constructive algebraic solution to this prob­
lem can be given. But for arbitrary rules, the
problem is in general NP hard. An exact solution
can thus presumably be found only by exhaustive
search. Approximation procedures must therefore
again be used.

The general problem in complex systems en­
gineering is to find designs or arrangements of
complex systems that behave in specified ways.
The behaviour sought usually corresponds to a

396 S. Wolfram / Approaches to complex ity engineering

comparatively simple, usually polynomial time,
computation. But to find exactly the necessary
design may require a computation that effectively
tests exponentially many possibilities. Since the
correctness of each possibility can be tested in
polynomial time, the problem of finding an ap­
propriate design is in the computational complex­
ity class NP (non-deterministic polynomial time).
But in many cases, the problem is in fact NP
complete (or at least NP hard). Special instances
of the problem thus correspond to arbitrary prob­
lems in NP; any general solution could thus be
applied to all problems in NP.

There are many NP complete problems, all
equivalent in the computational difficulty of their
exact solution [6]. Examples are satisfiability
(finding an assignment of truth values to variables
which makes a Boolean expression true),
Hamilton circuits (finding a path through a graph
that visits each arc exactly once), and spin glass
energy minima (finding the minimum energy con­
figuration in a spin glass model). In no case is an
algorithm known which takes polynomial time,
and systematically yields the exact solution.

Many approximate algorithms are nevertheless
known. And while the difficulty of finding exact
solutions to the different problems is equivalent,
the ease of approximation differs considerably. (A
separate consideration is what fraction of the in­
stances of a problem are difficult to solve with a
particular algorithm. Some number theoretical
problems, for example, have the property that all
their instances are of essentially equivalent dif­
ficulty [52].) Presumably the" landscapes" for dif­
ferent problems fall into several classes. There is
already some evidence that the landscapes for spin
glass energy and the "travelling salesman" prob­
lem have a hierarchical or ultrametric, and thus
fractal, form [53]. This may explain why the simu­
lated annealing method is comparatively effective
in these cases.

Even though their explicit forms cannot be
found, it could be that certain, say statistical,
features of solutions to NP problems could easily
be predicted. Certainly any solution must be dis-

tinguished by the P operation used to test its
validity. But at least for some class of NP hard
problems, one suspects that solutions will appear
random according to all standard statistical proce­
dures. Despite the" selection" process used to find
them, this would imply that their statistical prop­
erties would be typical of the ensemble of all
possibilities (cf. [54]).

There are many potential applications for com­
plex systems engineering. The most immediate
ones are in pattern recognition. The basic problem
is to take a wide variety of inputs, say versions of
spoken words, and to recognize to which category
or written word they correspond (e.g. [55]).

In general, there could be arbitrary mapping
from input to output, so that each particular case
would have to be specified explicitly. But in prac­
tice the number of possible inputs is far too large
for this to be feasible, and redundancy in the
inputs must be used. One must effectively make
some form of model for the inputs, which can be
used, for example, to delineate categories which
yield the same output.

One might for example allow particular kinds of
distortion or error in the input. Thus in studies of
DNA sequences, changes associated with substitu­
tion, deletion, insertion, or transposition of ele­
ments are usually considered [56]. A typical
problem of pattern recognition is then to de­
termine the category of a particular input, regard­
less of such changes.

Several approaches are conventionally used (e.g.
[55]).

One approach is template matching. Each cate­
gory is defined by a fixed" template". Then inputs
are successively compared with each of these tem­
plates, and the quality of match is determined,
typically by statistical means. The input is as­
signed to the category with the best match.

A second approach is feature extraction. A fixed
set of "features" is defined. The presence or
absence of each feature in a particular input is
then determined, often by template-matching
techniques. The category of the input is found

S. Wolfram / Approaches to complexity engineering 397

from the set of features it contains, typically
according to a fixed table.

In both these approaches, the pattern recogni­
tion procedure must be specially designed to deal
with each particular set of categories considered.
Templates or features that are sufficiently orthogo­
nal must be constructed, and small changes in the
behaviour required may necessitate large changes
in the arrangement used.

It would be more satisfactory to have a generic
system which would take a simple specification of
categories, and recognize inputs using "reason­
able" boundaries between the categories. This can
potentially be achieved with dissipative dynamical
systems. Different categories are specified as fixed
points (or other attractors) for the system. Then
the dynamics of the system determines the form of
the basins of attraction for each of these fixed
points. Any input within a particular basin will be
led to the appropriate fixed point. In general,
however, different inputs will take varying num­
bers of steps to reach the fixed point. Conven­
tional pattern recognition schemes typically take a
fixed time, independent of input. But more flexible
schemes presumably require variable times.

It should be realized, however, that such schemes
implicitly make definite models for the input data.
It is by no means clear that the dynamics of such
systems yield basin structures appropriate for par­
.ticular data. The basins are typically complicated
and difficult to specify. There will usually be no
simple metric, analogous to the quality of tem­
plate matches, which determines the basis for a
particular input from the fixed point to which it is
"closest". Fig. 2 shows a representation of the
basins of attraction in a two-scale cellular automa­
ton. No simple metric is evident.

While the detailed behaviour of a system may
be difficult to specify, it may be possible to find a
high-level phenomenological description of some
overall features, perhaps along the lines conven­
tional in psychology, or in the symbolic approach
to artificial intelligence (e.g. [58]). One can imag­
ine, for example, proximity relations for attractors
analogous to semantic networks (e.g [58]). This

• II • I II. IIII .111 •• I
"V

oooooooo

00100000

00010000

00001000

Fig. 2. Representation of the basins of attraction for fixed
points in a length 8 two-scale cellular automaton with q = 2
and rules 36 and 72. The configurations in each basin corre­
spond to possible paths traversing each graph from left to
right. Descending segments represent value one, ascending
segments value zero.

high level description might have the same kind of
relation to the underlying dynamics as phenome­
nological descriptions such as vortex streets have
to the basic equations of fluid flow.

To perform a particular pattern recognition task,
one must design a system with the appropriate
attractor structure. If, for example, categories are
to be represented by certain specified fixed points,
the system must be constructed to have these fixed
points. In a two-scale cellular automaton with

398 S. Wolfram /A pproaches to complexity engineering

k = 2 and q = 2, a single fixed point on the whole
lattice can potentially be produced with by an
appropriate choice of the slow configuration. Ar­
bitrary fixed points can be obtained in this way
only with particular pairs of rules. (The rules that
take all configurations to zero, and all configura­
tions to one, provide a trivial example.) But even
in this case, it is common for several different slow
configurations to yield the required fixed point,
but with very different basin structures. Often
spurious additional fixed points are also produced.
It is not yet clear how best to obtain only the
exact fixed points required.

It would be best to devise a scheme for "learn­
ing by example" (cf. [58]). In the simplest case, the
fixed points would be configurations correspond­
ing to "typical" members of the required cate­
gories. In a more sophisticated case, many input
and output pairs would be presented, and an
iterative algorithm would be used to design an
attractor structure to represent them. In a multiple
scale cellular automaton, such an algorithm might
typically make "small" incremental changes of a
few sites in the slow configuration. Again such a
procedure involves inferences about new inputs,
and requires a definite model.

Acknowledgements

I am grateful for discussions with many people,
including Danny Hillis, David Johnson, Stuart
Kauffman, Alan Lapedes, Marvin Minsky, Steve
Omohundro, Norman Packard, Terry Sejnowski,
Rob Shaw, and Gerry Tesauro.

References

[1] S. Wolfram, Cellular automata as models of complexity,
Nature 311 (1984) 419; S. Wolfram, ed., Theory and
Applications of Cellular Automata, (World Scientifc,
Singapore, 1986).

[2] 1. Hopfield, Neural networks and physical systems with
emergent collective computational abilities, Proc. Natl.
Acad. Sci. 79 (1982) 2554.

[3] W. Green, Digital Image Processing (Van Nostrand,
Princeton, 1983).

[4] R. Hamming, Coding and Information Theory (Prentice·
Hall, Englewood Cliffs, NJ, 1980).

[5] H .-a. Peitgen and P. Richter, The Beauty of Fractals:
Images of Complex Dynamical Systems (Springer, Berlin,
1985).

[6] M. Garey and D . Johnson, Computers and Intractability:
a Guide to the Theory of NP-Completeness (Freeman,
San Francisco, 1979).

[7] S. Wolfram, Random sequence generation by cellular
automata, Adv. Applied Math. 7 (1986) 123.

[8] K. Preston and M. Duff, Modern Cellular Automata
(Plenum, New York, 1984).

[9] S. Wolfram, Universality and complexity in cellular au­
tomata, Physica 10D (1984) l.

[10] S. Wolfram, Computation theory of cellular automata,
Commun. Math. Phys. 96 (1984) 15.

[11] S. Wolfram, Undecidability and intractability in theoret­
ical physics, Phys. Rev. Lett. 54 (1985) 735.

[12] N. Packard and S. Wolfram, Two-dimensional cellular
automata, J. Stat. Phys. 38 (1985) 90l.

[13] S. Wolfram, Computer software in science and mathe­
matics, Sci. Amer. (September 1984).

[14] R. Sverdlove, Inverse problems for dynamical systems in
the plane, in: Dynamical Systems, A.R. Bednarek and L.
Cesari, eds. (Academic Press, New York, 1977).

[15] E. Jen, Invariant strings and pattern-recognizing proper­
ties of one-dimensional cellular automata, J. Stat. Phys. 43
(1986) 243.

[16] M. Mezard, G. Parisi, N. Sourlas, G. Touluse and M.
Virasoro, Nature of spin glass phase, Phys. Rev. Lett. 52
(1984) 1156.

[17] J. Villain, The random field Ising model, in: Scaling
Phenomena and Disordered Systems, NATO ASI, Geilo,
Norway (April 1985).

[18] Proc. Heidelberg Colloq. on Spin Glasses, Heidelberg
(June 1983); K.H. Fischer, Phys. Status Solidi 116 (1983)
357.

[19] G. Vichniac, P. Tamayo and H. Hartman, Annealed and
quenched inhomogeneous cellular automata, J. Stat. Phys.,
to be published.

[20] S. Wolfram, Statistical mechanics of cellular automata,
Rev. Mod. Phys. 55 (1983) 60l.

[21] W. Kinzel, Phase transitions of cellular automata, Z. Phys.
B58 (1985) 229.

[22] T. Hogg and B. Huberman, Parallel computing structures
capable of flexible associations and recognition of fuzzy
inputs, J. Stat. Phys. 41 (1985) 115.

[23] T. Sejnowski, to be published.
[24] C. Mead and L. Conway, An Introduction to VLSI Sys­

tems (Addison-Wesley, New York, 1980).
[25] D . Ackley, G . Hinton and T. Sejnowski, A learning al­

gorithm for Boltzmann machines, Cognitive Sci. 9 (1985)
147.

[26] U. Frisch, B. Hasslacher and Y. Pomeau, "A lattice gas
automaton for the Navier-Stokes equation", Los Alamos
preprint LA-UR-85-3503; 1. Salem and S. Wolfram,
"Thermodynamics and hydrodynamics with cellular au­
tomata", lAS preprint (November 1985).

s. Wolfram/Approaches to complexity engineering 399

[27] S. Wolfram, "Glider gun guidelines", report distributed
through Computer Recreations section of Scientific
American; J. Park, K. Steiglitz and W. Thurston, "Soli­
ton-like behaviour in cellular automata", Physica 190
(1986) 423.

[28] A Smith, Simple computation-universal cellular spaces, J.
ACM 18 (1971) 331; E.R. Berlekamp, J.H. Conway and
R.K. Guy, Winning Ways for Your Mathematical Plays
(Academic Press, New York, 1982).

[29] O. Hillis, The Connection Machine (MIT press, Cam­
bridge, MA, 1985).

[30] S. Kauffman, Metabolic stability and epigenesis in ran­
domly constructed genetic nets, J. Theoret. BioI. 22 (1969)
437; Autocatalytic sets of proteins, J. Theor. BioI., in
press.

[31] A Gelfand and C. Walker, "Network modelling tech­
niques: from small scale properties to large scale systems",
University of Connecticut report (1982).

[32] E. Goles Chacc, "Comportement dynamique de reseaux
d'automates", Grenoble University report (1985).

[33] c. Leiserson, Fat trees: universal networks for hardware
efficient supercomputing, IEEE Trans. Comput. C-36
(1985) 892.

[34] J. Hopcroft and J. Ullman, Introduction to Automata
Theory, Languages and Computation (Addison-Wesley,
New York, 1979).

[35] S. Omohundro, "Connection Machine algorithms primer",
Thinking Machines Corporation (Cambridge, Mass.) re­
port in preparation.

[36] D. Knuth, Seminumerical Algorithms (Addison-Wesley,
New York, 1981).

[37] T.E. Ingerson and R.L. Buvel, Structure in asynchronous
cellular automata, Physica 100 (1984) 59.

[38] G. Vichniac, Simulating physics with cellular automata,
Physica lOD (1984) 96.

[39] C. Gerald, Applied Numerical Analysis (Addison-Wesley,
New York, 1978).

[40] M. Creutz, Deterministic Ising dynamics, Ann. Phys. 167
(1986) 62.

[41] C.AR. Hoare, Communicating sequential processes,
CACM 21 (1978) 666.

[42] E. Domany and W. Kinzel, Equivalence of cellular au­
tomata to Ising models and directed percolation, Phys.
Rev. Lett. 53 (1984) 31l.

[43] M. Minsky and S. Papert, Perceptrons (MIT press, Cam­
bridge, MA, 1972).

[44] Z. Kohavi, Switching and Finite Automata Theory
(McGraw-Hill, New York, 1970).

[45] R. Brayton, G. Hachtel, C. McMullen and A.
Sangiovanni-Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis (Kluwer, Oeventer, 1984).

[46] S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by
simulated annealing, Science 220 (1983) 67l.

[47] J. Hopfield and o. Tank, Neural computation of decisions
in optimization problems, BioI. Cybern. 52 (1985) 14l.

[48] J. Holland, "Genetic algorithms and adaptation", Tech.
Rep. #34, Univ. Michigan (1981).

[49] A Barr and E. Feigenbaum, The Handbook of Artificial
Intelligence (Heuris Tech Press, 1983), vol. l.

[50] J. Holland, "Escaping brittleness: the possibilities of gen­
eral purpose learning algorithms applied to parallel rule­
based systems", University of Michigan report.

[51] D. Lenat, Computer software for intelligent systems, Sci­
entific American (September 1984).

[52] M. Blum and S. Micali, How to generate cryptographi­
cally strong sequences of pseudo-random bits, SIAM J.
Comput. 13 (1984) 850.

[53] S. Kirkpatrick and G. Toulouse, Configuration space anal­
ysis of travelling salesman problems, J. Physique 46 (1985)
1277.

[54] S. Kauffman, Self-organization, selection, adaptation and
its limits: a new pattern of inference in evolution and
development, in: Evolution at a Crossroads, OJ. Depew
and B.H. Weber, eds., (MIT press, Cambridge, MA, 1985).

[55] C.J.O.M. Verhagen et al., Progress report on pattern
recognition, Rep. Prog. Phys. 43 (1980) 785.

[56] D. Sankoff and J. Kruskal, eds., Time Warps, String Edits,
and Macromolecules: the Theory and Practice of Se­
quence Comparison (Addison-Wesley, New York, 1983).

[57] M. Minksy, Society of Mind, in press.
[58] L. Valiant, A theory of the learnable, CACM 27 (1984)

1134.

	IMG_001
	IMG_002
	IMG_003
	IMG_004
	IMG_005
	IMG_006
	IMG_007
	IMG_008
	IMG_009
	IMG_010
	IMG_011
	IMG_012
	IMG_013
	IMG_014
	IMG_015
	IMG_016

