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APPROACHES TO COMPLEXITY ENGINEERING * 
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Principles for designing complex systems with specified forms of behaviour are discussed. Multiple scale cellular automata 
are suggested as dissipative dynamical systems suitable for tasks such as pattern recognition. Fundamental aspects of the 
engineering of such systems are characterized using computation theory, and some practical procedures are discussed. 

The capabilities of the brain and many other 
natural systems go far beyond those of any artifi­
cial systems so far constructed by conventional 
engineering means. There is however extensive 
evidence that at a functional level, the basic com­
ponents of such complex natural systems are quite 
simple, and could for example be emulated with a 
variety of technologies. But how large numbers of 
these components can act together to perform 
complex tasks is not yet known. There are prob­
ably some rather general principles which govern 
such overall behaviour, and allow it to be moulded 
to achieve particular goals. If these principles could 
be found and applied, they would make new forms 
of engineering possible. This paper discusses some 
approaches to such forms of engineering with 
complex systems. The emphasis is on general con­
cepts and analogies. But some of the specific sys­
tems discussed should nevertheless be amenable to 
implementation and detailed analysis. 

In conventional engineering or computer pro­
gramming, systems are built to achieve their goals 
by following strict plans, which specify the de­
tailed behaviour of each of their component parts. 
Their overall behaviour must always be simple 
enough that complete prediction and often also 
analysis is possible. Thus for example motion in 
conventional mechanical engineering devices is 
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usually constrained to be simply periodic. And in 
conventional computer programming, each step 
consists of a single operation on a small number 
of data elements. In both of these cases, much 
more complex behaviour could be obtained from 
the basic components, whether mechanical or logi­
cal, but the principles necessary to make use of 
such behaviour are not yet known. 

Nature provides many examples of systems 
whose basic components are simple, but whose 
overall behaviour is extremely complex. Mathe­
matical models such as cellular automata (e.g. [1]) 
seem to capture many essential features of such 
systems, and provide some understanding of the 
basic mechanisms by which complexity is pro­
duced for example in turbulent fluid flow. But 
now one must use this understanding to design 
systems whose complex behaviour can be con­
trolled and directed to particular tasks. From sci­
entific descriptions of the behaviour observed in 
complex systems, one must learn how to engineer 
complex systems with specified behaviour. 

Complexity in natural systems typically arises 
from the collective effect of a very large number of 
components. It is often essentially impossible to 
predict the detailed behaviour of anyone particu­
lar component, or in fact the precise behaviour of 
the whole system. But the system as a whole may 
nevertheless show definite overall behaviour, and 
this behaviour usually has several important fea­
tures. 

Perhaps most important, it is robust, and is 
typically unaffected by perturbations or failures of 

0167-2789/86/$03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



386 s. Wolfram / Approaches to complexity engineering 

individual components. Thus for example a change 
in the detailed initial conditions for the system 
usually has little or no effect on the overall out­
come of its evolution (although it may have a large 
effect on the detailed behaviour of some individual 
elements). The visual system in the brain, for 
example, can recognize objects even though there 
are distortions or imperfections in the input image. 
Its operation is also presumably unaffected by the 
failure of a few neurons. In sharp contrast, how­
ever, typical computer programs require explicit 
account to be taken of each possible form of 
input. In addition, failure of anyone element 
usually leads to catastrophic failure of the whole 
system. 

Dissipation, in one of many forms, is a key 
principle which lies behind much of the robustness 
seen in natural systems. Through dissipation, only 
a few features in the behaviour of a system survive 
with time, and others are damped away. Dissipa­
tion is often used to obtain reliable behaviour in 
mechanical engineering systems. Many different 
initial motions can for example be dissipated away 
through viscous damping to bring particular com­
ponents to rest. Such behaviour is typically rep­
resented by a differential equation whose solution 
tends to a particular fixed point at large times, 
independent of its initial conditions. Any informa­
tion on the particular initial conditions is thus 
destroyed by the irreversible evolution of the sys­
tem. 

In more complicated systems, there may be 
several fixed points, reached from different sets of 
initial conditions. This is the case for an idealized 
ball rolling on a landscape, with dissipation in the 
form of friction. Starting at any initial point, the 
ball is "attracted" towards one of the local height 
minima in the landscape, and eventually comes to 
rest there. The set of initial positions from which 
the ball goes to a particular such fixed point can 
be considered as the "basin of attraction" for that 
fixed point. Each such basin of attraction is 
bounded by a "watershed" which typically lies 
along ridges in the landscape. Dissipation destroys 
detailed information on particular initial condi-

tions, but preserves the knowledge of which basin 
of attraction they were in. The evolution of the 
system can be viewed as dividing its inputs into 
various "categories", corresponding to different 
basins of attraction. This operation is the essence 
of many forms of pattern recognition: despite 
small changes, one must recognize that a particu­
lar input is in a particular category, or matches a 
particular pattern. In the example of a ball rolling 
on a landscape, the categories correspond to dif­
ferent regions of initial positions. Small changes in 
input correspond to small changes in initial posi­
tion. 

The state of the system just discussed is given 
by the continuous variables representing the posi­
tion of the ball. More familiar examples of pattern 
recognition arise in discrete or digital systems, 
such as those used for image processing. An image 
might be represented by a 256 X 256 array of cells, 
each say black or white. Then a simple image 
processing operation would be to replace any iso­
lated black cell by a white cell. In this way certain 
single cell errors in the images can be removed (or 
"damped out"), and classes of images differing 
just by such errors can be recognized as equivalent 
(e.g. [3]). The process can be considered to have 
attractors corresponding to the possible images 
without such errors. Clearly there are many of 
these attractors, each with a particular basin of 
attraction. But in contrast to the example with 
continuous variables above, there is no obvious 
measure of "distance" on the space of images, 
which could immediately be used to determine 
which basin of attraction a particular image is in. 
Rather the category of an image is best de­
termined by explicit application of the image 
processing operation. 

Length n sequences of bits can be considered 
as corners of an n-dimensional hypercube. The 
Hamming distance between two sequences can 
then be defined as the number of edges of the 
hypercube that must be traversed to get from one 
to the other, or, equivalently, the total number of 
bits that differ between them. It is possible using 
algebraic methods to devise transformations with 
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basins of attraction corresponding to spheres 
which enclose all points at a Hamming distance of 
at most say two bits from a given point (4). This 
allows error-correcting codes to be devised in 
which definite messages can be reconstructed even 
though they may contain say up to two erroneous 
bits. 

The transformations used in error-correcting 
codes are specially constructed to have basins of 
attraction with very simple forms. Most dissipa­
tive transformations, however, yield much more 
complicated basins of attraction, which cannot for 
example be described by simple scalar quantities 
such as distances. The form of these basins of 
attraction determines what class of perturbations 
do not affect a system, and what classes of inputs 
can be recognized as equivalent. 

As a first example, consider various idealiza­
tions of the system discussed above consisting of a 
ball rolling with friction on a landscape, now 
assumed one dimensional. In the approximation 
of a point ball, this is equivalent to a particle 
moving with damping in a one-dimensional poten­
tial. The attractors for the system are again fixed 
points corresponding to minima of the potential. 
But the basins of attraction depend substantially 
on the exact dynamics assumed. In the case of 
very large friction, the particle satisfies a differen­
tial equation in which velocity is proportional to 
force, and force is given by the gradient of the 
potential. With zero initial velocity, the basins of 
attraction in this case have a simple form, sep­
arated by boundaries at the position of maxima in 
the potential. In a more realistic model, with finite 
friction and the inertia of the ball included, the 
system becomes similar to a Roulette wheel. And 
in this case it is known that the outcome is a 
sensitive function of the precise initial conditions. 
As a consequence, the basins of attraction corre­
sponding for example to different holes around 
the wheel must have a complicated, interdigitated, 
form. 

Complicated basin boundaries can also be ob­
tained with simplified equations of motion. As one 
example, one can take time to be discrete, and 

assume that the potential has the form of a poly­
nomial, so that the differential equation is ap­
proximated by an iterated polynomial mapping. 
The sequence of positions found from this map­
ping may overshoot the minimum, and for some 
values of parameters may in fact never converge 
to it. The region of initial conditions which evolve 
to a particular attractor may therefore be com­
plicated. In the case for example of the complex 
iterated mapping z ~ z 2 + c, the boundary of the 
basin of attraction (say for the attractor z = (0) is 
a Julia set, and has a very complicated fractal 
form (e.g. (5)). 

The essentials of the problem of finding basins 
of attraction already arise in the problem of find­
ing what set of inputs to a function of discrete 
variables yields a particular output. This problem 
is known in general to be computationally very 
difficult. In fact, the satisfiability problem of de­
termining which if any assignments of truth values 
to n variables in a Boolean expression make the 
whole expression true is NP complete, and can 
presumably be solved in general essentially only 
by explicitly testing all 2 n possible assignments 
(e.g. (6)). For some functions with a simple, per­
haps algebraic, structure, an efficient inversion 
procedure to find appropriate inputs may exist. 
But in general no simple mathematical formula 
can describe the pattern of inputs: they will sim­
ply seem random (d. (7)). 

Cellular automata provide many realistic exam­
ples of this problem. Cellular automata consist of 
a lattice of sites with discrete values updated in 
discrete steps according to a fixed rule which 
depends on their neighbours. The image processing 
operation mentioned above can be considered as a 
simple example of a single step in the evolution of 
a particular two-dimensional cellular automaton 
(cf. (8)). Other cellular automata show much more 
complicated behaviour, and it seems in fact that 
appropriate cellular automata capture the essential 
features of many complex systems in nature (e.g. 
[1)). The problems of complexity engineering ad­
dressed in nature are thus presumably already 
present in cellular automata. 
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Most cellular automata are dissipative, or irre­
versible, so that after many steps, they evolve to 
attractors which contain only a subset of their 
states. In some cellular automata (usually iden­
tified as classes 1 and 2), these attractors are fixed 
points (or limit cycles), and small changes in ini­
tial conditions are usually damped out [9]. Other 
cellular automata (classes 3 and 4), however, never 
settle down to a fixed state with time, but instead 
continue to show complicated, chaotic, behaviour. 
Such cellular automata are unstable, so that most 
initial perturbations grow with time to affect the 
detailed configuration of an ever-increasing num­
ber of sites. The statistical properties of the be­
haviour produced is nevertheless robust, and is 
unaffected by such perturbations. 

It can be shown that the set of fixed points of a 
one-dimensional cellular automata consists simply 
of all those configurations in which particular 
blocks of site values do not appear [10]. This set 
forms a (finite complement) regular language, and 
can be represented by the set of possible paths 
through a certain labelled directed graph [10]. 
Even when they are not fixed points, the set of 
states that can occur after say t time steps in the 
evolution of a one-dimensional cellular automaton 
in fact also forms a regular language (though not 
necessarily a finite complement one). In addition, 
the basin of attraction, or in general the set of all 
states which evolve after t steps to a given one, 
can be represented as a regular language. For class 
1 and 2 cellular automata, the size of the minimal 
graph for this language stays bounded, or at most 
increases like a polynomial with t. For class 3 and 
4 cellular automata, however, the graph often in­
creases apparently exponentially with t , so that it 
becomes increasingly difficult to describe the basin 
of attraction. In general, in fact, the problem of 
determining which states evolve to a particular 
one after t steps is a generalization of the satisfia­
bility problem for logical function mentioned 
above, and is thus NP complete. The basin of 
attraction in this case can thus also presumably 
only be found by explicit testing of essentially all 
0(2t) possible initial configurations (cf. [11 D. Its 

form will again often be so complicated as to seem 
random. For two-dimensional cellular automata, it 
is already NP complete just to find fixed points 
(specifically, to find say n X n blocks of sites with 
specified boundaries that are invariant under the 
cellular automaton rule) [12]. 

It is typical of complex systems that to de­
termine their behaviour requires extensive compu­
tation. This is a consequence of the fact that the 
evolution of the systems themselves typically cor­
responds to a sophisticated computation. In fact, 
the evolution of many complex systems is prob­
ably computationally irreducible: it can be found 
essentially only by direct simulation, and cannot 
be predicted by any short-cut procedure [11, 13]. 
Such computational irreducibility is a necessary 
consequence of the efficient use of computational 
resources in a system. Any computational reduci­
bility is a sign of inefficiency, since it implies that 
some other system can determine the outcome 
more efficiently. 

Many systems in nature may well be computa­
tionally irreducible, so that no general predictions 
can be made about their behaviour. But if a sys­
tem is to be used for engineering, it must be 
possible to determine at least some aspects of its 
behaviour. Conventional engineering requires de­
tailed specification of the precise behaviour of 
each component in a system. To make use of 
complex systems in engineering, one must relax 
this constraint, and instead require only some 
general or approximate specification of the overall 
behaviour of systems. 

One goal is to design systems which have par­
ticular attractors. For the example of a ball rolling 
on a landscape, this is quite straightforward (cf. 
[14D. In one dimension, the landscape could be 
given by the polynomial TIJx - xy, where the Xi 

are the desired minima, or attractors. This poly­
nomial is explicitly constructed to yield certain 
attractors in the dynamics. However, it implies a 
particular structure for the basins of attraction. If 
the attractors are close to equally spaced, or are 
sufficiently far apart, then in fact the boundary of 
the basins of attraction for successive attractors 
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will be roughly half way between them. Notice, 
however, that as the parameters of the landscape 
polynomial are changed, the structure of the at­
tractors and basins of attraction obtained can 
change discontinuously, as described by catastro­
phe theory. 

For a more complex system, such as a cellular 
automaton, it is more difficult to obtain a particu­
lar set of attractors. One approach is to construct 
cellular automaton rules which leave particular 
sequences invariant [15]. If these sequences are say 
of length L, and are arbitrarily chosen, then it 
may be necessary to use a cellular automaton rule 
which involves a neighbourhood of up to L - 1 
sites. The necessary rule is straightforward to con­
struct, but takes about 2L - 1 bits to specify. 

Many kinds of complex systems can be consid­
ered as bases for engineering. Conventional en­
gineering suggests some principles to follow. The 
most important is the principle of modularity. The 
components of a system should be arranged in 
some form of hierarchy. Components higher on 
the hierarchy should provide overall control for 
sets of components lower on the hierarchy, which 
can be treated as single units or modules. This 
principle is crucial to software engineering, where 
the modules are typically subroutines. It is also 
manifest in biology in the existence of organs and 
definite body parts, apparently mirrored by sub­
routine-like constructs in the genetic code. 

An important aspect of modularity is the ab­
straction it makes possible. Once the construction 
of a particular module has been determined, the 
module can be treated as a single object, and only 
its overall behaviour need be considered, wherever 
it appears. Modularity thus divides the problem of 
constructing or analysing a system into many 
levels, potentially making each level manageable. 

Modularity is used in essentially all of the sys­
tems to be discussed below. In most cases, there 
are just two levels : controlling (master) and con­
trolled (slave) components. The components on 
these two levels usually change on different time 
scales. The controlling components change at most 

slowly, and are often fixed once a system say with 
a particular set of attractors has been obtained. 
The controlled components change rapidly, 
processing input data according to dynamical rules 
determined by the controlling components. Such 
separation of time scales is common in many 
natural and artificial systems. In biology, for ex­
ample, phenotypes of organisms grow by fast 
processes, but are determined by genotypes which 
seem to change only slowly with time. In software 
engineering, computer memory is divided into a 
part for "programs", which are supposed to re­
main fixed or change only slowly, and another 
part for intermediate data, which changes rapidly. 

Even though it is not part of their construction, 
many systems seem dynamically to develop a 
modular structure, often with arbitrarily many 
hierarchical levels arranged say on a balanced tree 
[16]. But for engineering purposes, it seems best to 
start with systems that are modular from the 
outset. 

Multiple scale cellular automata provide simple 
but quite general examples of such systems. An 
ordinary cellular automaton consists of a lattice of 
sites, with each site having say k possible values, 
updated according to the same definite rule. A 
two-scale cellular automaton can be considered to 
consist of two lattices, whose site values change on 
different characteristic time scales. The values of 
the sites on the "slow" lattice control the rules 
used at the corresponding sites on the "fast" 
lattice. With q possible values for the slow lattice 
sites, there is an array of q possible rules for each 
site on the fast lattice. Such a two-scale cellular 
automaton can always be emulated by specially 
chosen configurations in an ordinary cellular au­
tomaton with at most qk possible values at each 
site. 

If the sites on the slow lattice are fixed, then a 
two-scale cellular automaton acts like a dynamic 
random field spin system (e.g. [17]), or a spin glass 
(e.g. [18]) (cf. [19]). Examples of patterns gener­
ated by cellular automata of this kind are shown 
in fig. 1. And if instead the "slow" lattice sites 
change rapidly, and take on essentially random 
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values, perhaps as a result of following a chaotic 
cellular automaton rule, then the evolution of the 
fast lattice is like that of a stochastic cellular 
automaton, or a directed percolation system (e.g. 
[21]). 

With dissipative dynamics, the evolution of the 
fast lattice in a two-scale cellular automaton yields 
attractors. The form of these attractors is de­
termined by the control configuration on the slow 
lattice. By choosing different slow lattice con­
figurations, it is thus possible to engineer particu­
lar attractor structures. 

In a typical case, a two-scale cellular automaton 
might be engineered to recognize inputs in differ­
ent categories. Each category would be repre­
sented by a fixed point in the fast lattice 
dynamics. The system can then be arranged in 
several ways. Assume that the input is a one-di­
mensional symbol sequence (such as a text string). 
Then one possibility would be to consider a one­
dimensional cellular automaton whose fixed points 
correspond to symbol sequences characteristic of 
each category. But if the required fixed points are 
arbitrarily chosen, few of them can be specified by 
a single slow configuration. If the cellular automa­
ton has N sites, then each fixed point of the fast 
lattice is specified by N log2 k bits. A configura­
tion of the slow lattice involves only N log2 q bits. 
As a consequence, the number of arbitrarily-cho­
sen fixed points that can be specified is just log q/ 
log k, a result independent of N. 

Usually, however, it is not necessary to give all 
N log2 k bits of a fixed point to specify the form 
of the attractor for a particular category. The 
number of bits actually needed presumably in­
creases with the number of categories. It is com­
mon to find a small number of possible categories 
or responses to a wide variety of input data. The 
responses can then for example be represented by 
the values of a small number of sites on the fast 
lattice of a two-scale cellular automaton. The in­
put data can be used to give initial values for a 
larger number of sites, possibly a different set. (In 
an analogy with the nervous system, some sites 
might receive input from afferent nerves while 

others, typically smaller in number, might gener­
ate output for efferent nerves.) 

A second possibility is to consider a two-dimen­
sional two-scale cellular automaton, in which the 
input is specified along a line, and the dynamics of 
the fast lattice transfers information only in a 
direction orthogonal to this line [22] (d. [23]). This 
arrangement is functionally equivalent to a one­
dimensional two-scale cellular automaton in which 
the slow lattice configuration changes at each time 
step. In its two-dimensional form, the arrange­
ment is very similar to a systolic array [24], or in 
fact to a multilayer generalization of standard 
modular logic circuits, such a programmable logic 
arrays [24]. In an N X M system of this kind, a 
single slow lattice configuration can specify 
M log q/log k length N fixed points in the fast 
configuration (d. [2]). 

In the approaches just discussed, input is given 
as an initial condition for the fast lattice. An 
alternative possibility is that the input could be 
given on the slow lattice, and could remain 
throughout the evolution of the fast lattice. The 
input might for example then specify boundary 
conditions for evolution on a two-dimensional fast 
lattice. Output could be obtained from the final 
configuration of the fast lattice. However, there 
will often be several different attractors for the 
fast lattice dynamics even given boundary condi­
tions from a particular slow lattice configuration. 
Which attractor is reached will typically depend 
on the initial conditions for the fast lattice, which 
are not specified in this approach. With ap­
propriate dynamics, however, it is nevertheless 
possible to obtain almost unique attractors: one 
approach is to add probabilistic elements or noise 
to the fast lattice dynamics so as to make it 
ergodic, with a unique invariant measure corre­
sponding to a definite" phase" [25]. 

Cellular automata are arranged to be as simple 
as possible in their basic microscopic construction. 
They are discrete in space and time. Their sites are 
all identical, and are arranged on a regular lattice. 
The sites have a finite set of possible values, which 
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are updated synchronously according to identical 
deterministic rules that depend on a few local 
neighbours. But despite this microscopic simplic­
ity, the overall macroscopic behaviour of cellular 
automata can be highly complex. On a large scale, 
cellular automata can for example show con­
tinuum features [12, 26], randomness [7], and 
effective long-range interactions [27]. Some cellu­
lar automata are even known to be universal com­
puters [28], and so can presumably simulate any 
possible form of behaviour. Arbitrary complexity 
can thus arise in cellular automata. But for en­
gineering purposes, it may be better to consider 
basic models that are more sophisticated than 
cellular automata, and in which additional com­
plexity is included from the outset (cf. [2]). 
Multiple scale cellular automata incorporate mod­
ularity, and need not be homogeneous. Further 
generalizations can also considered, though one 
suspects that in the end none of them will turn out 
to be crucial. 

First, cellular automaton dynamics is local: it 
involves no long-range connections which can 
transmit information over a large distance in one 
step. This allows (one or two-dimensional) cellular 
automata to be implemented directly in the simple 
planar geometries appropriate, for example, for 
very large-scale integrated circuits. Long range 
electronic signals are usually carried by wires which 
cross in the third dimension to form a complicated 
network. (Optical communications may also be 
possible.) Such an arrangement is difficult to im­
plement technologically. When dynamically­
changing connections are required, therefore, more 
homogeneous switching networks are used, as in 
computerized telephone exchanges, or the Connec­
tion Machine computer [29]. Such networks are 
typically connected like cellular automata, though 
often in three (and sometimes more) dimensions. 

Some natural systems nevertheless seem to in­
corporate intrinsic long range connections. Chem­
ical reaction networks are one example: reaction 
pathways can give almost arbitrary connectivity in 
the abstract space of possible chemical species [30, 
31 , 32]. Another example is the brain, where nerves 

can carry signals over long distances. In many 
cases, the pattern of connectivity chosen seems to 
involve many short-range connections, together 
with a few long-range ones, like motorways (free­
ways) or trunk lines [33]. It is always possible to 
simulate an arbitrary arrangement of long range 
connections through sequences of short range con­
nections; but the existence of a few intrinsic long 
range connections may make large classes of such 
simulations much more efficient [33]. 

Many computational algorithms seem to involve 
arbitrary exchange of data. Thus for example, in 
the fast Fourier transform, elements are combined 
according to a shuffle-exchange graph (e.g. [29]). 
Such algorithms can always be implemented by a 
sequence of local operations. But they seem to be 
most easily conceived without reference to the 
dynamics of data transfer. Indeed, computers and 
programming languages have traditionally been 
constructed to enforce the idealization that any 
piece of data is available in a fixed time (notions 
such as registers and pipelining go slightly beyond 
this). Conventional computational complexity the­
ory also follows this idealization (e.g. [34]). But in 
developing systems that come closer to actual 
physical constraints, one must go beyond this 
idealization. Several classes of algorithms are 
emerging that can be implemented efficiently and 
naturally with local communications (e.g. [35]). A 
one-dimensional cellular automaton (" iterative 
array") can be used for integer multiplication [36]. 
Two dimensional cellular automata (" systolic 
arrays") can perform a variety of matrix manipu­
lation operations [24]. 

Although the basic rules for cellular automata 
are local, the rules are usually applied in syn­
chrony, as if controlled by a global clock. A 
generalization would allow asynchrony, so that 
different sites could be updated at different times 
(e.g. [37]). Only a few sites might, for example, be 
updated at each time step. This typically yields 
more gradual transitions from one cellular au­
tomaton configuration to another, and can prevent 
certain instabilities. Asynchronous updating makes 
it more difficult for information to propagate 
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through the cellular automaton, and thus tends to 
prevent initial perturbations from spreading. As a 
result, the evolution is more irreversible and dis­
sipative. Fixed point and limit cycle (class 1 and 
2) behaviour therefore become more common. 

For implementation and analysis, it is often 
convenient to maintain a regular updating sched­
ule. One possibility is to alternate between updates 
of even and odd-numbered sites (e.g. [38)). " New" 
rather than "old" values for the nearest neighbours 
of a particular cell are then effectively used. This 
procedure is analogous to the implicit, rather than 
explicit, method for updating site values in finite 
difference approximations to partial differential 
equations (e.g. [39]). It is known often to lead to 
better convergence (e.g. [39]). The scheme also 
yields, for example, systematic relaxation to ther­
modynamic equilibrium in a cellular automaton 
version of the microcanonical Ising model [40): 
simultaneous updating of all sites allows un­
damped oscillations in this case [38). 

One can also consider systems in which sites are 
updated in a random order, perhaps one at a time. 
Such systems can often be analysed using" mean 
field theory", by assuming that the behaviour of 
each individual component is random, with a par­
ticular average (cf. [2)). Statistical predictions can 
then often be made from iterations of maps in­
volving single real parameters. As a result, mono­
tonic approach to fixed points is more easily 
established. 

Random asynchronous updating nevertheless 
makes detailed analysis more difficult. Standard 
computational procedures usually require definite 
ordering of operations, which can be regained in 
this case only through mechanisms such as sema­
phores (e.g. [41]), typically at considerable cost. 

Rather than introducing randomness into the 
updating scheme, one can instead include it di­
rectly in the basic cellular automaton rule. The 
evolution of such stochastic cellular automata can 
then be analogous to the steps in a Monte Carlo 
simulation of a spin system at nonzero tempera­
ture [42). Randomness typically prevents the sys­
tem from being trapped in metastable states, and 

can therefore accelerate the approach to equi­
librium. 

In most practical implementations, however, 
supposedly random sequences must be obtained 
from simple algorithms (e.g. [36]). Chaotic cellular 
automata can produce sequences with a higher 
degree of randomness [7), presumably making ex­
plicit insertion of external randomness unneces­
sary. 

Another important simplifying feature of cellu­
lar automata is the assumption of discrete states. 
This feature is convenient for implementation by 
digital electronic circuits. But many natural sys­
tems seem to involve continuously-variable 
parameters. There are usually components, such 
as molecules or vesicles of neurotransmitter, that 
behave as discrete on certain levels. But very large 
numbers of these components can act in bulk, so 
that for example only their total concentration is 
significant, and this can be considered as an essen­
tially continuous variable. In some systems, such 
bulk quantities have simple behaviour, described 
say by partial differential equations. But the over­
all behaviour of many cellular automata and other 
systems can be sufficiently complex that no such 
bulk or average description is adequate. Instead 
the evolution of each individual component must 
be followed explicitly (cf. [11)). 

For engineering purposes, it may nevertheless 
sometimes be convenient to consider systems that 
involve essentially continuous parameters. Such 
systems can for example support cumulative small 
incremental changes. In a cellular automaton, the 
states of n elements are typically represented by 
(!I ( n) bits of information. But bulk quantities can 
be more efficiently encoded as digital numbers, 
with only (!I(log n) bits. There may be some situa­
tions in which data is best packaged in this way, 
and manipulated say with arithmetic operations. 

A potential advantage of using continuous vari­
ables is the possibility of applying standard 
mathematical analysis techniques, as in traditional 
mathematical physics. But the advantage is prob­
ably largely illusory. Extensive results can typi­
cally be obtained only when the behaviour of the 
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system is too simple to show the complexity re­
quired (d. [43]). 

Having selected a basic system, the problem of 
engineering then consists in designing or pro­
gramming it to perform particular tasks. The con­
ventional approach is systematically to devise a 
detailed step-by-step plan. But such a direct con­
structive approach cannot make the most efficient 
use of a complex system. 

Logic circuit design provides an example (e.g. 
[44]). The task to be performed is the computation 
of a Boolean function with n inputs specified by a 
truth table. In a typical case, the basic system is a 
programmable logic array (PLA): a two-level cir­
cuit which implements disjunctive normal form 
(DNF) Boolean expressions, consisting of disjunc­
tions (ORs) of conjunctions (ANDs) of input vari­
ables (possibly negated) [24, 25). The direct 
approach would be to construct a circuit which 
explicitly tests for each of the 2n cases in the truth 
table. The resulting circuit would contain (7)(n2n) 
gates. Thus for example, the circuit which yields 1 
if two or more of its three inputs Q; are one would 
be represented by Ql Q 2Q 3 + QlQ2 a 3 + Ql a2Q 3 + 
al Q 2 Q 3' where multiplication represents AND and 
addition represents OR. (This function can be 
viewed as the k = 2, r = 1 cellular automaton rule 
number 232 [20]). 

Much smaller circuits are however often suffi­
cient. But direct constructive techniques are not 
usually appropriate for finding them. Instead one 
uses methods that manipulate the structure of 
circuits, without direct regard to the meaning of 
the Boolean functions they represent. Many meth­
ods start by extracting prime implicants [44, 45). 
Logical functions of n variables can be considered 
as colourings of the Boolean n-cube. Prime impli­
cants represent this colouring by decomposing it 
into pieces along hyperplanes of different dimen­
sions. Each prime implicant then corresponds to a 
single conjunction of input variables: a circuit for 
the original Boolean function can be formed from 
a disjunction of these conjunctions. This circuit is 

typically much smaller than the one obtained by 
direct construction. (For the majority function 
mentioned above, it is Ql Q 2 + Ql Q 3 + Q 2Q 3.) And 
while it performs the same task, it is usually no 
longer possible to give an explicit step-by-step 
"explanation" of its operation. 

A variety of algebraic and heuristic techniques 
are used for further simplification of DNF Boolean 
expressions [45). But it is in general very difficult 
to find the absolutely minimal expression for any 
particular function. In principle, one could just 
enumerate all possible progressively more com­
plicated expressions or circuits, and find the first 
one which reproduces the required function. But 
the number of possible circuits grows exponen­
tially with the number of gates, so such an exhaus­
tive search rapidly becomes entirely infeasible. It 
can be shown in fact that the problem of finding 
the absolute minimal expression is NP hard, sug­
gesting that there can never be a general proce­
dure for it that takes only polynomial time [6). 
Exhaustive search is thus effectively the only pos­
sible exact method of solution. 

In most cases, however, it is not necessary to 
find the absolutely minimal circuit: any suffi­
ciently simple circuit will suffice. As a result, one 
can consider methods that find only approxi­
mately minimal circuits. 

Most approximation techniques are basically 
iterative: they start from one circuit, then succes­
sively make changes which preserve the function­
ality of the circuit, but modify its structure. The 
purpose is to find minima in the circuit size or 
"cost" function over the space of possible circuits. 
The effectiveness of different techniques depends 
on the form of the circuit size "landscape". 

If the landscape was like a smooth bowl, then 
the global minimum could be found by starting at 
any point, and systematically descending in the 
direction of the local gradient vector. But in most 
cases the landscape is presumably more com­
plicated. It could for example be essentially fiat, 
except for one narrow hole containing the mini­
mum (like a golf course). In such a case, no simple 
iterative procedure could find the minimum. 
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Another possibility, probably common in prac­
tice, is that the landscape has a form reminiscent 
of real topographical landscapes, with a com­
plicated pattern of peaks and valleys of many 
different sizes. Such a landscape might well have a 
self similar or fractal form: features seen at differ­
ent magnifications could be related by simple 
scalings. Straightforward gradient descent would 
always get stuck in local minima on such a land­
scape, and cannot be used to find a global mini­
mum (just as water forms localized lakes on a 
topographical landscape). Instead one should use 
a procedure which deals first with large-scale fea­
tures, then progressively treats smaller and smaller 
scale details. 

Simulated annealing is an example of such a 
technique [46]. It is based on the gradient descent 
method, but with stochastic noise added. The noise 
level is initially large, so that all but the largest 
scale features of the landscape are smeared out. A 
minimum is found at this level. Then the noise 
level (" temperature") is reduced, so that smaller 
scale features become relevant, and the minimum 
is progressively refined. The optimal temperature 
variation (" annealing schedule") is probably de­
termined by the fractal dimension of the lands­
cape. 

In actual implementations of the simulated an­
nealing technique, the noise will not be truly ran­
dom, but will instead be generated by some 
definite, and typically quite simple, procedure. As 
a consequence, the whole simulated annealing 
computation can be considered entirely determin­
istic. And since the landscape is probably rather 
random, simple deterministic perturbations of 
paths will probably suffice (cf. [47]). 

In the simulated annealing approach, each indi­
vidual "move" might consist of a transformation 
involving say two logic gates. An alternative pro­
cedure is first to find the minimal circuit made 
from "modules" containing many gates, and then 
to consider rearranging progressively smaller sub­
modules. The hierarchical nature of this determin­
istic procedure can again mirror the hierarchical 
form of the landscape. 

The two approaches just discussed involve itera­
tive improvement of a single solution. One can 
also consider approaches in which many candidate 
solutions are treated in parallel. Biological evolu­
tion apparently uses one such approach. It gener­
ates a tree of different genotypes, and tests the 
" fitness" of each branch in parallel. Unfit branches 
die off. But branches that fare well have many 
offspring, each with a genotype different by a 
small random perturbation ("genetic algorithm" 
[48]). These offspring are then in turn tested, and 
can themselves produce further offspring. As a 
result, a search is effectively conducted along many 
paths at once, with a higher density of paths in 
regions where the fitness is improving. (This is 
analogous to decision tree searching with, say, 
a,B-pruning [49].) Random perturbations in the 
paths at each generation may prevent getting stuck 
in local minima, but on a fractal landscape of the 
type discussed above, this procedure seems less 
efficient than one based on consideration of pro­
gressively finer details. 

In the simplest iterative procedures, the possible 
changes made to candidate solutions are chosen 
from a fixed set. But one can also imagine modify­
ing the set of possible changes dynamically ' [50] 
(cf. [51]). To do this, one must parametrize the 
possible changes, and in turn search the space of 
possibilities for optimal solutions. 

The issues discussed for logic circuit design also 
arise in engineering complex systems such as two­
scale cellular automata. A typical problem in this 
case is to find a configuration for the slow lattice 
that yields particular fixed points for evolution on 
the fast lattice. For simple linear rules, for exam­
ple, a constructive algebraic solution to this prob­
lem can be given. But for arbitrary rules, the 
problem is in general NP hard. An exact solution 
can thus presumably be found only by exhaustive 
search. Approximation procedures must therefore 
again be used. 

The general problem in complex systems en­
gineering is to find designs or arrangements of 
complex systems that behave in specified ways. 
The behaviour sought usually corresponds to a 
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comparatively simple, usually polynomial time, 
computation. But to find exactly the necessary 
design may require a computation that effectively 
tests exponentially many possibilities. Since the 
correctness of each possibility can be tested in 
polynomial time, the problem of finding an ap­
propriate design is in the computational complex­
ity class NP (non-deterministic polynomial time). 
But in many cases, the problem is in fact NP 
complete (or at least NP hard). Special instances 
of the problem thus correspond to arbitrary prob­
lems in NP; any general solution could thus be 
applied to all problems in NP. 

There are many NP complete problems, all 
equivalent in the computational difficulty of their 
exact solution [6]. Examples are satisfiability 
(finding an assignment of truth values to variables 
which makes a Boolean expression true), 
Hamilton circuits (finding a path through a graph 
that visits each arc exactly once), and spin glass 
energy minima (finding the minimum energy con­
figuration in a spin glass model). In no case is an 
algorithm known which takes polynomial time, 
and systematically yields the exact solution. 

Many approximate algorithms are nevertheless 
known. And while the difficulty of finding exact 
solutions to the different problems is equivalent, 
the ease of approximation differs considerably. (A 
separate consideration is what fraction of the in­
stances of a problem are difficult to solve with a 
particular algorithm. Some number theoretical 
problems, for example, have the property that all 
their instances are of essentially equivalent dif­
ficulty [52].) Presumably the" landscapes" for dif­
ferent problems fall into several classes. There is 
already some evidence that the landscapes for spin 
glass energy and the "travelling salesman" prob­
lem have a hierarchical or ultrametric, and thus 
fractal, form [53]. This may explain why the simu­
lated annealing method is comparatively effective 
in these cases. 

Even though their explicit forms cannot be 
found, it could be that certain, say statistical, 
features of solutions to NP problems could easily 
be predicted. Certainly any solution must be dis-

tinguished by the P operation used to test its 
validity. But at least for some class of NP hard 
problems, one suspects that solutions will appear 
random according to all standard statistical proce­
dures. Despite the" selection" process used to find 
them, this would imply that their statistical prop­
erties would be typical of the ensemble of all 
possibilities (cf. [54]). 

There are many potential applications for com­
plex systems engineering. The most immediate 
ones are in pattern recognition. The basic problem 
is to take a wide variety of inputs, say versions of 
spoken words, and to recognize to which category 
or written word they correspond (e.g. [55]). 

In general, there could be arbitrary mapping 
from input to output, so that each particular case 
would have to be specified explicitly. But in prac­
tice the number of possible inputs is far too large 
for this to be feasible, and redundancy in the 
inputs must be used. One must effectively make 
some form of model for the inputs, which can be 
used, for example, to delineate categories which 
yield the same output. 

One might for example allow particular kinds of 
distortion or error in the input. Thus in studies of 
DNA sequences, changes associated with substitu­
tion, deletion, insertion, or transposition of ele­
ments are usually considered [56]. A typical 
problem of pattern recognition is then to de­
termine the category of a particular input, regard­
less of such changes. 

Several approaches are conventionally used (e.g. 
[55]). 

One approach is template matching. Each cate­
gory is defined by a fixed" template". Then inputs 
are successively compared with each of these tem­
plates, and the quality of match is determined, 
typically by statistical means. The input is as­
signed to the category with the best match. 

A second approach is feature extraction. A fixed 
set of "features" is defined. The presence or 
absence of each feature in a particular input is 
then determined, often by template-matching 
techniques. The category of the input is found 
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from the set of features it contains, typically 
according to a fixed table. 

In both these approaches, the pattern recogni­
tion procedure must be specially designed to deal 
with each particular set of categories considered. 
Templates or features that are sufficiently orthogo­
nal must be constructed, and small changes in the 
behaviour required may necessitate large changes 
in the arrangement used. 

It would be more satisfactory to have a generic 
system which would take a simple specification of 
categories, and recognize inputs using "reason­
able" boundaries between the categories. This can 
potentially be achieved with dissipative dynamical 
systems. Different categories are specified as fixed 
points (or other attractors) for the system. Then 
the dynamics of the system determines the form of 
the basins of attraction for each of these fixed 
points. Any input within a particular basin will be 
led to the appropriate fixed point. In general, 
however, different inputs will take varying num­
bers of steps to reach the fixed point. Conven­
tional pattern recognition schemes typically take a 
fixed time, independent of input. But more flexible 
schemes presumably require variable times. 

It should be realized, however, that such schemes 
implicitly make definite models for the input data. 
It is by no means clear that the dynamics of such 
systems yield basin structures appropriate for par­
.ticular data. The basins are typically complicated 
and difficult to specify. There will usually be no 
simple metric, analogous to the quality of tem­
plate matches, which determines the basis for a 
particular input from the fixed point to which it is 
"closest". Fig. 2 shows a representation of the 
basins of attraction in a two-scale cellular automa­
ton. No simple metric is evident. 

While the detailed behaviour of a system may 
be difficult to specify, it may be possible to find a 
high-level phenomenological description of some 
overall features, perhaps along the lines conven­
tional in psychology, or in the symbolic approach 
to artificial intelligence (e.g. [58]). One can imag­
ine, for example, proximity relations for attractors 
analogous to semantic networks (e.g [58]). This 
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Fig. 2. Representation of the basins of attraction for fixed 
points in a length 8 two-scale cellular automaton with q = 2 
and rules 36 and 72. The configurations in each basin corre­
spond to possible paths traversing each graph from left to 
right. Descending segments represent value one, ascending 
segments value zero. 

high level description might have the same kind of 
relation to the underlying dynamics as phenome­
nological descriptions such as vortex streets have 
to the basic equations of fluid flow. 

To perform a particular pattern recognition task, 
one must design a system with the appropriate 
attractor structure. If, for example, categories are 
to be represented by certain specified fixed points, 
the system must be constructed to have these fixed 
points. In a two-scale cellular automaton with 
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k = 2 and q = 2, a single fixed point on the whole 
lattice can potentially be produced with by an 
appropriate choice of the slow configuration. Ar­
bitrary fixed points can be obtained in this way 
only with particular pairs of rules. (The rules that 
take all configurations to zero, and all configura­
tions to one, provide a trivial example.) But even 
in this case, it is common for several different slow 
configurations to yield the required fixed point, 
but with very different basin structures. Often 
spurious additional fixed points are also produced. 
It is not yet clear how best to obtain only the 
exact fixed points required. 

It would be best to devise a scheme for "learn­
ing by example" (cf. [58]). In the simplest case, the 
fixed points would be configurations correspond­
ing to "typical" members of the required cate­
gories. In a more sophisticated case, many input 
and output pairs would be presented, and an 
iterative algorithm would be used to design an 
attractor structure to represent them. In a multiple 
scale cellular automaton, such an algorithm might 
typically make "small" incremental changes of a 
few sites in the slow configuration. Again such a 
procedure involves inferences about new inputs, 
and requires a definite model. 
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