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Various conditions necessary for the self-consistency of the Weinberg-Salam model are used to place constraints on 
fermion and Higgs Boson masses. We find that spontaneous symmetry breakdown cannot generate fermion masses in excess 
of about 300 GeV. 

In the Weinberg- Salam SU(2)L X U(1) model for 
weak interactions, the masses of all the gauge bosons, 
quarks and leptons are taken to arise from the Higgs 
mechanism. At the tree approximation, the couplings 
of the Higgs scalar field I/> to itself determine the effec
tive potential V(I/» , which in turn determines the sym
metry of the "vacuum". In this approximation V(I/» is 
independent of the couplings (which determine the 
masses attained after spontaneous symmetry break
down) of fermions and gauge bosons to 1/>. If, however, 
one-loop corrections to V(I/» are included, then the 
gauge bosons a.nd fermions will influence V(I/». The 
requirement that this influence should not serve to 
prevent the possibility of spontaneous symmetry break
down places several constraints on the couplings in the 
theory, and hence on the ratios of masses of various 
particles. Linde and Weinberg [I] have derived a lower 
bound on the mass of the Higgs particle H by demand
ing that the energy density of the "vacuum" after spon
taneous symmetry breakdown should not exceed its 
value when I/> = O. In this note, we apply the more com
plete requirement that the conventional "vacuum" in 
which {I/>}"* 0 corresponds to the absolute, rather than 
only a local, minimum of V(I/» , at least in the domain 
where V(I/» may be obtained reliably from perturba
tion theory. If all fermion and gauge boson masses are 
generated from the vacuum expectation value of a 
single I/> field, then this constraint allows one to place 
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an upper bound on the fermion masses. The exact 
form of the bound involves mW ' mH and other pa
rameters, but typically the mass mf of the heaviest 
fermion must satisfy mf:S 300 GeV. While this range 
is not immediately accessible to experimental investi
gation, the very existence of such a bound , coming 
solely from considerations of self-consistency , places 
constraints on models for weak interactions. Our 
bound is equivalent to an upper limit on the dimen
sionless fermion - Higgs Yukawa coupling,f, and it 
ensures that [is perturbatively small; mf:S 300 GeV 
corresponds to [2 /4rr:S 0 .1. 

In a theory with more than one coupling constant, 
one-loop graphs can dominate over tree graphs, while 
perturbation theory remains reliable because all cou
plings are small. For example, with a gauge coupling 
g and 1/>4 self-coupling A (both small), but such that A 
is of order g4 , a gauge boson loop can compete with 
O(A) tree graphs, while yet higher-order corrections re
main unimportant. However, even if the couplings are 
small, the perturbation expansion breaks down when 
logarithms of field strengths become large t I . In the 
following discussion, we shall simply require that the 
theory.be consistent over the range of I/> that can be 
explored perturbatively. 

The complete formula for V(I/» in the one-loop ap
proximation is [2] 

V(I/» = - hL2 <il2 +! AI/>4 + A 1/>4 log (1/>2 IM2) , (1 a) 

tl Rcnormalization group improvement would be helpful only 
if the theory were asymptotically free . 
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where 

1 ["" 4 "" 4J A =- U 3g· - U f.. 
641T2 gauge bosons I fermions I ' 

(1 b) 

and the gj (fi) are the couplings of the gauge bosons 
(fermions) to the Higgs particles. Note that, because 
of Fermi statistics, the fermion contribution to A is 
negative. The parameter Min eq. (la) is a renormaliza
tion mass. In the Weinberg- Salam SU(2)L X U(l) 
model, A is given by 

In our numerical estimates, we use sin20w = 0.23, so 
that mw "'" 77 GeV. We have dropped the 0(11.2) con
tributions of Higgs scalar loops to V(¢), since, as dis
cussed below, these must be negligible if perturbation 
theory is to be valid" 2 • 

For spontaneous symmetry breakdown to occur it 
is necessary that V(¢) should have a non-trivial local 

minimum at ¢ = ¢o such that 

¢o * 0, 5 V/5¢1</>=</>0 = 0, 

52 V/5¢21</>=</>0 = m~ ;;. ° . (3) 

To investigate the consistency of a theory based on the 
"vacuum" ¢ =¢O ' we shall assume such a theory and 
then find under what circumstances inconsistencies ap
pear. In that case, the parameters}.J.2 and M2 appear
ing in the effective potential V(¢) may be eliminated 
in favor of ¢O and mH' It is convenient to introduce 

S == ¢/¢o' 2 == 4A¢5/m~ , (4a) 

in terms of which 

X [22S210g(S2) - 32S2 + 42 + S2 - 2]. (4b) 

The requirement [1] V(¢o) < V(O) necessary to al
low spontaneous symmetry breakdown becomes 

,,2 For quark loops, higher-order QeD corrections are govern
ed by an effective coupling evaluated on the scale of </>0 
(see eq. (3», and may therefore safely be ignored. 

Fig. 1. The reduced effective potential V(</» = (8/mh</>g) V(</» as a function of </>/</>0 for various choices of the combination of cou
plings ::: defined in eq. (4). For usual spontaneous symmetry breakdown to occur, </> = </>0 must correspond to an absolute minimum 
of V(</», at least within the range of </> accessible to perturbation theory. 
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(5) 

so that E < 1. 
In fig. 1 we plot V(¢) as a function of ¢Irt>o for 

various values of E. As the Yukawa couplings Ii in
crease, E decreases, as does V(¢o). For negative E , a 
new phenomenon occurs : V(¢) eventually turns over 
and goes to _00 as ¢ ~ 00. However, since our expres
sion for V(¢) is obtained from perturbation theory, we 
have no estimate of it for values of ¢ so large that 
A log(¢2 !¢6) < 1. We therefore do not consider its be
havior as I/> ~ 00, but rather, require that V(I/» > V(I/>O) 
for all values of I/> =1= 1/>0 within the range over which 
V(I/» is reliably calculated. If this is not satisfied, then 
the theory is inevitably inconsistent. Fig. 2 shows the 
values 1/>1 of I/> for which V( 1/>1) becomes less than 
V(I/>o), as a function of E. (We also show the values of 
I/> corresponding to the second local maximum of 
V(I/».) For large values oflog(1/>1 Irt>o), one finds 

E"" - [410g(1/>11rt>0)] - 1 . (6) 

If the theory is to allow a stable "vacuum" in pertur
bation theory then 1/>1 must lie outside the range of va
lidity of perturbative approximations. In practice, our 

�o00 ,-------,--.."..,--,-,..---,-,-----,--,---, 

100 
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-b~.O~I ~-~--~O~.I-~-~--LI-~~~~-IO 

Fig. 2. The values of </> at which V(</» drops below V(</>o) and at 
which the second local maximum of V(</» occurs, as a func
tion of :::. These values of </> must be so large that our perturba
tive methods fail if the "vacuum" </> = </>0 is to be stable. 
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final results are rather insensitive to the precise value of 
E which is deemed unacceptable. Combining the Linde
Weinberg condition [1] with our requirements on 
V(I/» one obtains 

(7) 

where IEmin I is presumably much less than 1 and per
haps as small as 0.005. 

For any particular set of fields and couplings, one 
can translate these bounds on E into bounds on ratios 
of particle masses. Consider first the case of the 
Weinberg- Salam SU(2)L X U(l) model with its one 
complex SU(2)L doublet of Higgs fields and with a 
single heavy fermion. In this case (g and g' are defined 

in eq. (2» 

E = (m?v/641T2m~;) {3 [2g4 + (g2 + g'2)2] 

_ (gmf/2mw)4} . 

The first inequality in eq. (7) then becomes 

mH ?'(mw/81Tg) {3[2g4 + (g2 +g'2)2] 

- (gmr/2mw)4}1/2 

(8) 

"" {24[1.8 - 0.01 (mf/mw)4]}1/2 GeV , (9) 

which reduces to the Linde-Weinberg bound [1] mH 
?, 6 GeV when mf ~ O. Note that this bound places no 
constraint on mH when mf < 3.6 mw "" 280 GeV. A 
constraint is, however , provided by the second inequal
ity in eq. (7), which yields 

mf ~ (imw/g) {3 [2g4 + (g2 + g'2)2] 

_ (81TgmH/mw)2 Emin}I/4 

"" 244 {l.8 - 250 Emin m~/m?v }1 /4 . (10) 

The regions in mf and mH allowed by the bounds (9) 
and (10) are illustrated in fig. 3 for various choices of 
Emin . If there are many fermions, then the mf in eqs. 
(9) and (10) is obviously replaced by (~i miy/4; for 
quarks each color is counted separately. 

Our bound on mf does not come from the require
ment that the Yukawa couplings of the Higgs bosons 
to the fermions should not be large; in fact, so long as 

(mH/m)I/2 is not enormous it is much more stringent. 
However, for a perturbative investigation of the theory 
to be at all meaningful, it is necessary that higher and 



Volume 82B, number 2 PHYSICS LETTERS 26 March 1979 

1000 

800 

max 
m f 600 
(GeV) 

400 

200 

Fig. 3. The domains in the mass of the Higgs particle and of the heaviest fermion for which the Weinberg-Salam model is con
sistent. The value of :::min depends on the region of validity of perturbation theory ; :::min is probably very small. The forbidden 
region in the lower left-hand corner represents the Linde- Weinberg bound. 

higher orders in the perturbation series should give sys
tematically smaller contributions. Experiments have 
shown tnat g and g' satisfy this condition, and our 
bounds on mf ensure that it will hold for the fi. The 
quartic self-couplings "A. of the Higgs bosons must also 
obey the condition, so that * 3 

"A./4rr2 = g2mA (1 + '!- z + O(Z2))/16rr2m2 ~ 1 , 

or 

mH ~ 4rrmw/g "'" 1000 GeV . (11 ) 

All predictions of the theory are obtained by perturba
tive methods, and, if the bound (11) were not satisfied 
then no predictions could be made *4. 

We have given bounds on the Higgs particle mass 
(eqs. (9) , (10) and (11)) which result from demanding 
consistency of the theory. However, by making the 
specific assumption that the term J12</>2 in V(</» 

*3 For the purposes of computing higher-order corrections to 
the effective A, we have defined A '" ~1i4 V/Ii</>4 1 </>=</>0' 

*4 Similar conclusions have been reached by demanding that 
the high-energy interactions of Higgs particles in the Born 
approximation should not violate unitarity [3]. 

vanishes * S , one may obtain a definite prediction for 
mH [2]: 

mH "'" (mw/4..j2rr){3 [2g4 + (g2 + g'2)2] 

- 6(gmr/2mW)4}1/2 . (12) 

If the fermion term can be ignored, then this gives 
mH "'" 9 GeV - close to the range of present experi
ments. 

In this paper, we have concentrated on the simplest 
workable model for weak interactions, since there is so 
far no compelling experimental evidence for a more 
complicated structure. In more complicated models our 

*S If dimensional regularization is used, then the </>2 counter
terms generated at each order in the perturbation series 
must be proportional to the bare .).I2, since the renormali
zation mass (which allows the coupling constant to attain 
dimensions away from d = 4) can enter only in logarithms. ' 
Hence the vanishing of the renormalized).l2 in V(</» which 
was suggested in ref. [2] may be preserved naturally to all 
orders, despite the fact that no symmetry requires it. It 
would naively be guaranteed by scale invariance, but this 
is violated by renormalization. Nevertheless, the violations 
in perturbation theory are logarithmic and do not provide 
a scale for the mass. 
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bounds may be strengthened, weakened or may even 
disappear entirely . For example , if one introduces an 
extra Higgs field which couples only to certain fermions , 
then our bounds (7) cannot be used, because they in
volve the vacuum expectation value of the new Higgs 
field , which would only be determined directly from 
the mass of a gauge boson coupled to it. 

To conclude, we have investigated the Weinberg
Salam SU(2)L X U(1) model for weak interactions, 
and find that unless ratios of particle masses obey cer
tain bounds, no meaningful predictions based on the 
model may be obtained by perturbative methods. 
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