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This note describes the geometrical pattern of zeroes and ones obtained by reducing modulo 
two each element of Pascal's triangle formed from binomial coefficients. When an infinite number 
of rows of Pascal's triangle are included, the limiting pattern is found to be "self-similar," and is 
characterized by a "fractal dimension" log 2 3. Analysis of the pattern provides a simple derivation 
of the result that the number of even binomial coefficients in the nth row of Pascal's triangle is 
2#,(n), where #l(n) is a function which gives the number of occurrences of the digit 1 in the 
binary representation of the integer n. 

Pascal's triangle modulo two appears in the analysis of the structures generated by the 
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evolution of a class of systems known as "cellular automata" (See [1], [2], [3] for further details 
and references.) These systems have been investigated as simple mathematical models for natural 
processes (such as snowflake growth) which exhibit the phenomenon of "self organization." The 
self-similarity of the patterns discussed below leads to self-similarity in the natural structures 
generated. 
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FIG. !. The first few lines of Pascal's triangle modulo two. 

FIG. 2. The first sixty-four lines of Pascal's triangle modulo two (black squares indicate ones, white squares 
indicate zeroes). 

Fig. 1 shows the first few rows of Pascal's triangle, together with the figure obtained by 
reducing each element 'modulo two, and indicating ones by black squares and zeroes by white 
(blank) squares. Fig. 2 gives sixty-four rows of Pascal's triangle reduced modulo two. A regular 
pattern of inverted triangles with various sizes differing by powers of two is clear. Large inverted 
triangles spanning the whole of Pascal's triangle begin at rows n = 2J. Consider the pattern down 
to the beginning of one such large inverted triangle (say down to the sixty-third row). A striking 
feature of the pattern is that the largest upright triangle contains three smaller triangles whose 
contents are similar (except at the scale of very small triangles) to those of the largest triangle, but 
reduced in size by a factor of two. Inspection of each of these three smaller triangles reveals that 
each is built from three still smaller similar triangles. This "self similarity" continues down to the 
smallest triangles. At each stage, one upright triangle from the pattern could be magnified by one 
or more factors of two to obtain essentially the complete pattern. The pattern obtained differs 
from the original complete pattern at the scale of very small triangles. If, however, Pascal's 
triangle were extended to an infinite number of rows, then for all finite triangles this effect would 
disappear, and the original and magnified patterns would be identical. In fact, triangles of any size 
could be reproduced by taking smaller triangles and then magnifying them. The limiting pattern 
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obtained from Pascal's triangle modulo two is thus" self similar" or "scale invariant," and may be 
considered to exhibit the same structure at all length scales. Many examples of other "self similar" 
figures are given in [4], [5]. 

If the number of inverted triangles with base length i is denoted 1';, then Fig. 2 indicates that 
1';/ 2 = 31'; . For large i, therefore 

(1 ) 

The exponent log23 :: 1.59 appearing here gives the "fractal dimensionality" [4], [5] of the 
self-similar pattern. 

Consider a (" filled in") square. Reduce the square by a factor of two in each of its linear 
dimensions. Four copies of the resulting reduced square are then required to cover the original 
square. Alternatively, one may write that the number of squares S; with side length i contained in 
the original square satisfies S, /2 = 4S;, so that S; - i - 2. The exponent two here gives the usual 
dimensionality of the square. One may then by analogy identify the exponent :: 1.59 in Equation 
(1) as the generalized or "fractal" dimension of the figure formed from Pascal's triangle modulo 
two. 

Fig. 2 suggests that the number N (n) of ones in the nth row of Pascal's triangle modulo two 
(or, equivalently, the number of odd binomial coefficients of the form (';) is a highly irregular 
function of n. However, when n is of the form 2;, the simple result N (2;) = 2 is obtained. This 

can be considered a consequence of the algebraic relation ( ~J ) = 0 mod p for 0 < i < pi and all 

primes p, which may be proved by considering the base p representations of factorials. Algebraic 
methods [6]-[12] have been used to obtained the general result 

(2) 

The function #1 (n) gives the number of occurrences of the digit 1 in the binary representation of 
the integer n. Hence, for example, #1(1) = I, #1(2) = #1(102 ) = I, #1(3) = #1(11 2) = 2, 
#1 (4) = 1) and so on. A graph of #1 (n) for n up to 128 is given in Fig. 3. Note that although the 
function is defined only for integer n , values at successive integers have been joined by straight 
Ii nes on the graph. For n > 0, 1 ~ # I ( n) ~ r log2 11 1. The lower bound is reached when n is of the 
form 2i; the upper one when n = 2' - 1. Clearly #1(2 i n) = #dn) (since mUltiplication by 2i 
simply appends zeroes, not affecting the number of 1 digits), and for n < 2i , #I(n + 2i) = 

#1(11) + 1 (since the addition of 2' in this case prepends a single I, without affecting the 
remaining digits). 

The result (2) for N (n) may be obtained by consideration of the geometrical pattern of Fig. 2, 
continued for 2f log , ,, 1 rows, so as to include the complete upright triangle containing the nth row. 
By construction, the nth row corresponds to a line which crosses the lower half of the largest 
upright triangle. Each successive digit in the binary decomposition of n determines whether the 
line crosses the upper (0) or lower (1) halves of successively smaller upright triangles. The upper 
halves always contain one upright triangle smaller by a factor two; the lower halves contain two 
such smaller triangles. The total number of triangles crossed by the line corresponding to the nth 
row is thus multiplied by a factor of two each time the lower half is chosen. The total number of 
ones in the nth row is therefore a product of the factors of two associated with each 1 digit in the 
binary representation of n, as given by Equation (2). 

There are several possible extensions and generalizations of the results discussed above. 
One may consider Pascal's triangle reduced modulo some arbitrary integer k . Fig. 4 shows the 

resulting patterns for a few values of k . In all cases, a self-similar pattern is obtained when 
sufficiently many rows are included. For k prime, a very regular pattern is found, with fractal 
dimension 

k (k+l) Dk = 10gkL i = 1 + logk - 2- , 
, - I 
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FIG. 3. The number of ones in the binary representation of the integer II. 

so that D) = 1 + log) 2 :::: 1.631, Ds :::: 1.683, and so on. In general, for large k, one finds that 
Dk - 2 - 1jlog2k; when k -+ 00, the elements of Pascal's triangle modulo k become ordinary 
integers, which are all nonzero by virtue of the nonzero values of binomial coefficients. By a 
simple generalization of Equation (2), the number of entries with value r in the nth row of 
Pascal's triangle modulo k is found to be N(r)(n) = 2#~kl(n), where now #!k)(n) gives the 
number of occurrences of the digit r in the base-k representation of the integer n. 

One may also consider the generalization of Pascal's triangle to a three-dimensional pyramid of 
trinomial coefficients. Successive rows in the triangle are generalized to planes in the pyramid, 
with each plane carrying a square grid of integers. The apex of the pyramid is formed from a 
single 1. In each successive plane, the integer at each grid point is the sum of the integers at the 
four neighbouring grid points in the preceding plane. When the integers in the resulting 
three-dimensional array are reduced modulo k, a self-similar pattern is again obtained. With 
k = 2, the fractal dimension of the pattern is log25 :::: 2.32. In general, the pattern obtained from 
the d-dimensional generalization of Pascal's triangle, reduced modulo two, has fractal dimension 
log2(2d+ 1). 
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FIG. 4. Patterns obtained by reducing Pascal's triangle modulo k for several values of k. White squares indicate 
zeroes; progressively blacker squares indicate increasing values, up to k - 1. 
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