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Cellular automata are used as simple mathematical models to investigate self-organization in statistical
mechanics. A detailed analysis is given of “elementary” cellular automata consisting of a sequence of sites
with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to
definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular
automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions
~1.59 or ~1.69. With “random” initial configurations, the irreversible character of the cellular automa-
ton evolution leads to several self-organization phenomena. Statistical properties of the structures generat-
ed are found to lie in two universality classes, independent of the details of the initial state or the cellular
automaton rules. More complicated cellular automata are briefly considered, and connections with dynami-
cal systems theory and the formal theory of computation are discussed.
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I. INTRODUCTION

The second law of thermodynamics implies that isolat-
ed microscopically reversible physical systems tend with
time to states of maximal entropy and maximal “disor-
der.” However, “dissipative” systems involving micro-
scopic irreversibility, or those open to interactions with
their environment, may evolve from “disordered” to more
“ordered” states. The states attained often exhibit a com-
plicated structure. Examples are outlines of snowflakes,
patterns of flow in turbulent fluids, and biological sys-
tems. The purpose of this paper is to begin the investiga-
tion of cellular automata (introduced in Sec. II) as a class
of mathematical models for such behavior. Cellular auto-
mata are sufficiently simple to allow detailed mathemati-
cal analysis, yet sufficiently complex to exhibit a wide
variety of complicated phenomena. Cellular automata are
also of sufficient generality to provide simple models for
a very wide variety of physical, chemical, biological, and
other systems. The ultimate goal is to abstract from a
study of cellular automata general features of “self-
organizing” behavior and perhaps to devise universal laws
analogous to the laws of thermodynamics. This paper
concentrates on the mathematical features of the simplest
cellular automata, leaving for future study more compli-
cated cellular automata and details of applications to
specific systems. The paper is largely intended as an origi-
nal contribution, rather than a review. It is presented in
this journal in the hope that it may thereby reach a wider
audience than would otherwise be possible. An outline of
some of its results is given in Wolfram (1982a).

Investigations of simple “self-organization” phenomena
in physical and chemical systems (Turing, 1952; Haken,
1975, 1978, 1979, 1981; Nicolis and Prigogine, 1977; Lan-
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dauer, 1979; Prigogine, 1980; Nicolis et al., 1981) have
often been based on the Boltzmann transport differential
equations (e.g., Lifshitz and Pitaevskii, 1981) (or its ana-
logs) for the time development of macroscopic quantities.
The equations are obtained by averaging over an ensemble
of microscopic states and assuming that successive col-
lisions between molecules are statistically uncorrelated.
For closed systems (with reversible or at least unitary mi-
croscopic interactions) the equations lead to Boltzmann’s
H theorem, which implies monotonic evolution towards
the macroscopic state of maximum entropy. The equa-
tions also imply that weakly dissipative systems (such as
fluids with small temperature gradients imposed) should
tend to the unique condition of minimum entropy produc-
tion. However, in strongly dissipative systems, several fi-
nal states may be possible, corresponding to the various
solutions of the polynomial equations obtained from the
large time limit of the Boltzmann equations. Details or
“fluctuations” in the initial state determine which of
several possible final states are attained, just as in a sys-
tem with multiple coexisting phases. Continuous changes
in parameters such as external concentrations or tempera-
ture gradients may lead to discontinuous changes in the
final states when the number of real roots in the polyno-
mial equations changes, as described by catastrophe
theory (Thom, 1975). In this way, “structures” with
discrete boundaries may be formed from -continuous
models. However, such approaches become impractical
for systems with very many degrees of freedom, and
therefore cannot address the formation of genuinely com-
plex structures.

More general investigations of self-organization and
“chaos” in dynamical systems have typically used simple
mathematical models. One approach (e.g., Ott, 1981)
considers dissipative nonlinear differential equations (typ-
ically derived as idealizations of Navier-Stokes hydro-
dynamic equations). The time evolution given particular
initial conditions is represented by a trajectory in the
space of variables described by the differential equations.
In the simplest cases (such as those typical for chemical
concentrations described by the Boltzmann transport
equations), all trajectories tend at large times to a small
number of isolated limit points, or approach simple
periodic limit cycle orbits. In other cases, the trajectories

Copyright © 1983 The American Physical Society 601



602 Wolfram: Statistical mechanics of cellular automata

may instead concentrate on complicated and apparently
chaotic surfaces (“strange attractors”). Nearly linear sys-
tems typically exhibit simple limit points or cycles. When
nonlinearity is increased by variation of external parame-
ters, the number of limit points or cycles may increase
without bound, eventually building up a strange attractor
(typically exhibiting a statistically self-similar structure in
phase space). A simpler approach (e.g., Ott, 1981) in-
volves discrete time steps, and considers the evolution of
numbers on an interval of the real line under iterated
mappings. As the nonlinearity is increased, greater num-
bers of limit points and cycles appear, followed by essen-
tially chaotic behavior. Quantitative features of this ap-
proach to chaos are found to be universal to wide classes
of mappings. Notice that for both differential equations
and iterated mappings, initial conditions are specified by
real numbers with a potentially infinite number of signifi-
cant digits. Complicated or seemingly chaotic behavior is
a reflection of sensitive dependence on high-order digits
in the decimal expansions of the numbers.

Models based on cellular automata provide an alterna-
tive approach, involving discrete coordinates and vari-
ables as well as discrete time steps. They exhibit compli-
cated behavior analogous to that found with differential
equations or iterated mappings, but by virtue of their
simpler construction are potentially amenable to a more
detailed and complete analysis.

Section II of this paper defines and introduces cellular
automata and describes the qualitative behavior of ele-
mentary cellular automata. Several phenomena charac-
teristic of self-organization are found. Section III gives a
quantitative statistical analysis of the states generated in
the time evolution of cellular automata, revealing several
quantitative universal features. Section IV describes the
global analysis of cellular automata and discusses the re-
sults in the context of dynamical systems theory and the
formal theory of computation. Section V considers brief-
ly extensions to more complicated cellular automata. Fi-
nally, Sec. VI gives some tentative conclusions.

Il. INTRODUCTION TO CELLULAR AUTOMATA

Cellular automata are mathematical idealizations of
physical systems in which space and time are discrete,
and physical quantities take on a finite set of discrete
values. A cellular automaton consists of a regular uni-
form lattice (or “array”), usually infinite in extent, with a
discrete variable at each site (“cell”). The state of a cellu-
lar automaton is completely specified by the values of the
variables at each site. A cellular automaton evolves in
discrete time steps, with the value of the variable at one
site being affected by the values of variables at sites in its
“neighborhood” on the previous time step. The neighbor-
hood of a site is typically taken to be the site itself and all
immediately adjacent sites. The variables at each site are
updated simultaneously (“synchronously”), based on the
values of the variables in their neighborhood at the
preceding time step, and according to a definite set of “lo-
cal rules.”
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Cellular automata were originally introduced by von
Neumann and Ulam (under the name of “cellular spaces”)
as a possible idealization of biological systems (von Neu-
mann, 1963, 1966), with the particular purpose of model-
ling biological self-reproduction. They have been applied
and reintroduced for a wide variety of purposes, and re-
ferred to by a variety of names, including “tessellation au-
tomata,” “homogeneous structures,” “cellular structures,”

“tessellation structures,” and “iterative arrays.”
Physical systems containing many discrete elements

with local interactions are often conveniently modelled as
cellular automata. Any physical system satisfying dif-
ferential equations may be approximated as a cellular au-
tomaton by introducing finite differences and discrete
variables.! Nontrivial cellular automata are obtained
whenever the dependence on the values at each site is non-
linear, as when the system exhibits some form of “growth
inhibition.” A very wide variety of examples may be con-
sidered; only a few are sketched here. In the most direct
cases, the cellular automaton lattice is in position space.
At a microscopic level, the sites may represent points in a
crystal lattice, with values given by some quantized ob-
servable (such as spin component) or corresponding to the
types of atoms or units. The dynamical Ising model (with
kinetic energy terms included) and other lattice spin sys-
tems are simple cellular automata, made nondeterministic
by “noise” in the local rules at finite temperature. At a
more macroscopic level, each site in a cellular automaton
may represent a region containing many molecules (with a
scale size perhaps given by an appropriate correlation
length), and its value may label one of several discrete
possible phases or compositions. In this way, cellular au-
tomata may be used as discrete models for nonlinear
chemical systems involving a network of reactions cou-
pled with spatial diffusion (Greenberg et al., 1978). They
have also been used in a (controversial) model for the evo-
lution of spiral galaxies (Gerola and Seiden, 1978; Schewe,
1981). Similarly, they may provide models for kinetic as-
pects of phase transitions (e.g., Harvey et al., 1982). For
example, it is possible that growth of dendritic crystals
(Langer, 1980) may be described by aggregation of
discrete “packets” with a local growth inhibition effect
associated with local releases of latent heat, and thereby
treated as a cellular automaton [Witten and Sander (1981)
discuss a probabilistic model of this kind, but there are in-
dications that the probabilistic elements are inessential].
The spatial structure of turbulent fluids may perhaps be
modelled using cellular automata by approximating the
velocity field as a lattice of cells, each containing one or
no eddies, with interactions between neighboring cells.
Physical systems may also potentially be described by cel-
lular automata in wave-vector or momentum space, with
site values representing excitations in the corresponding
modes.

! The discussion here concentrates on systems first order in
time; a more general case is mentioned briefly in Sec. IV.
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Many biological systems have been modelled by cellular
automata (Lindenmayer, 1968; Herman, 1969; Ulam,
1974; Kitagawa, 1974; Baer and Martinez, 1974; Rosen,
1981) (cf. Barricelli, 1972). The development of structure
and patterns in the growth of organisms often appears to
be governed by very simple local rules (Thompson, 1961;
Stevens, 1974) and is therefore potentially well described
by a cellular automaton model. The discrete values at
each site typically label types of living cells, approximated
as growing on a regular spatial lattice. Short-range or
contact interactions may lead to expression of different
genetic characteristics, and determine the cell type. Sim-
ple nonlinear rules may lead to the formation of complex
patterns, as evident in many plants and animals. Exam-
ples include leaf and branch arrangements (e.g., Stevens,
1974) and forms of radiolarian skeletons (e.g., Thompson,
1961). Simple behavior and functioning of organisms
may be modelled by cellular automata with site values
representing states of living cells or groups of cells [Burks
(1973) and Flanigan (1965) discuss an example in heart fi-
brillation]. The precise mathematical formulation of such
models allows the behavior possible in organisms or sys-
tems with particular construction or complexity to be in-
vestigated and characterized (e.g., von Neumann, 1966).
Cellular automata may also describe populations of non-
mobile organisms (such as plants), with site values corre-
sponding to the presence or absence of individuals
(perhaps of various types) at each lattice point, with local
ecological interactions.

Cellular automata have also been used to study prob-
lems in number theory and their applications to tapestry
design (Miller, 1970, 1980; ApSimon, 1970a, 1970b; Sut-
ton, 1981). In a typical case, successive differences in a
sequence of numbers (such as primes) reduced with a
small modulus are taken, and the geometry of zero re-
gions is investigated.

As will be discussed in Sec. IV, cellular automata may
be considered as parallel processing computers (cf. Man-
ning, 1977; Preston et al., 1979). As such, they have been
used, for example, as highly parallel multipliers (Atrubin,
1965; Cole, 1969), sorters (Nishio, 1981), and prime num-
ber sieves (Fischer, 1965). Particularly in two dimensions,
cellular automata have been used extensively for image
processing and visual pattern recognition (Deutsch, 1972;
Sternberg, 1980; Rosenfeld, 1979). The computational
capabilities of cellular automata have been studied exten-
sively (Codd, 1968; Burks, 1970; Banks, 1971; Aladyeyv,
1974, 1976; Kosaraju, 1974; Toffoli, 1977b), and it has
been shown that some cellular automata could be used as
general purpose computers, and may therefore be used as
general paradigms for parallel computation. Their locali-
ty and simplicity might ultimately permit their im-
plementation at a molecular level.

The notorious solitaire computer game “Life” (Con-
way, 1970; Gardner, 1971, 1972; Wainwright, 1971—1973;
Wainwright, 1974; Buckingham, 1978; Berlekamp et al.,
1982; R. W. Gosper, private communications) (qualita-
tively similar in some respects to the game of “Go”) is an
example of a two-dimensional cellular automaton, to be

Rev. Mod. Phys., Vol. 55, No. 3, July 1983

discussed briefly in Sec. V.

Until Sec. V, we shall consider exclusively one-
dimensional cellular automata with two possible values of
the variables at each site (“base 2”) and in which the
neighborhood of a given site is simply the site itself and
the sites immediately adjacent to it on the left and right.
We shall call such cellular automata elementary. Figure 1
specifies one particular set of local rules for an elementary
cellular automaton. On the top row, all 2°=8 possible
values of the three variables in the neighborhood are
given, and below each one is given the value achieved by
the central site on the next time step according to a par-
ticular local rule. Figure 2 shows the evolution of a par-
ticular state of the cellular automaton through one time
step according to the local rule given in Fig. 1.

The local rules for a one-dimensional neighborhood-
three cellular automaton are described by an eight-digit
binary number, as in the example of Fig. 1. (In specifying
cellular automata, we use this binary number interchange-
ably with its decimal equivalent.) Since any eight-digit
binary number specifies a cellular automaton, there are
28=256 possible distinct cellular automaton rules in one
dimension with a three-site neighborhood. Two inessen-
tial restrictions will usually be imposed on these rules.
First, a cellular automaton rule will be considered “ille-
gal” unless a “null” or “quiescent” initial state consisting
solely of O remains unchanged. This forbids rules whose
binary specification ends with a 1 (and removes symmetry
in the treatment of 0 and 1 sites). Second, the rules must
be reflection symmetric, so that 100 and 001 (and 110 and
011) yield identical values. These restrictions’ leave 32
possible “legal” cellular automaton rules of the form
a1a,a3a40,05a40.

The local rules for a cellular automaton may be con-
sidered as a Boolean function of the sites within the
neighborhood. Let s,(m) be the value of site m at time
step n. As a first example consider the “modulo-two”
rule 90 (also used as the example for Fig. 1). According to
this rule, the value of a particular site is simply the sum
modulo two of the values of its two neighboring sites on
the previous time step. The Boolean equivalent of this
rule is therefore

Spyp1lm) = s,(m —D@s,(m+1) i)
or schematically s, =s “@®s™*, where ® denotes addition
modulo two (“exclusive disjunction” or “inequality”).
Similarly, rule 18 is equivalent to s, =sV(s~@s™)
[where s denotes s,(m)], rule 22 to s, =sy (s~ As™t),
rule 54 to s, =s@®(s~Vs*), rule 150 to s, =s “@sds T,
and so on. Designations s ~ and s * always enter symme-
trically in legal cellular automaton rules by virtue of re-

? The quiescence condition is required in many applications to
forbid “instantaneous propagation” of value-one sites. The re-
flection symmetry condition guarantees isotropy as well as
homogeneity in cellular automaton evolution.
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FIG. 1. Example of a set of local rules for the time evolution of
a one-dimensional elementary cellular automaton. The vari-
ables at each site may take values O or 1. The eight possible
states of three adjacent sites are given on the upper line. The
lower line then specifies a rule for the time evolution of the cel-
lular automaton by giving the value to be taken by the central
site of the three on the next time step. The time evolution of the
complete cellular automaton is obtained by simultaneous appli-
cation of these rules at each site for each time step. The rule
given is the modulo-two rule: the value of a site at a particular
time step is simply the sum modulo two of the values of its two
neighbors at the previous time step. Any possible sequence of
eight binary digits specifies a cellular automaton.

flection symmetry. The Boolean function representation
of cellular automaton rules is convenient for practical im-
plementation on standard serial processing digital com-
puters.

Some cellular automaton rules exhibit the important
simplifying feature of “additive superposition” or “addi-
tivity.” Evolution according to such rules satisfies the su-
perposition principle

s0=to$u0 > S"=t,,@u,,, (22)

which implies that the configurations obtained by evolu-
tion from any initial configuration are given by appropri-
ate combinations of those found in Fig. 3 for evolution
from a single nonzero site. Notice that such additivity
does not imply linearity in the real number sense of Sec. I,
since the addition is over a finite field. Cellular automata
satisfy additive superposition only if their rule is of the
form a;a,0a;0,a;a;0 with a;=a;®a,. Only rules 0,
90, 150, and 204 are of this form. Rules 0 and 204 are
trivial; O erases any initial configuration, and 204 main-
tains any initial configuration unchanged (performing the
identity transformation at each time step). Rule 90 is the
modulo-two rule discussed above, and takes a particular
site to be the sum modulo two of the values of its two
neighbors at the previous time step, as in Eq. (2.1). Rule
150 is similar. It takes a particular site to be the sum
modulo two of the values of its two neighbors and its own

3 The values of a sequence of (typically 32) sites are represent-
ed by bits in a single computer word. Copies of this word shift-
ed one bit to the left and one bit to the right are obtained. Then
the cellular automaton rule may be applied in parallel to all bits
in the words using single machine instructions for each word-
wise Boolean operation. An analogous procedure is convenient
in simulation of two-dimensional cellular automata on computer
systems with memory-mapped displays, for which application
of identical Boolean operations to each display pixel is usually
implemented in hardware or firmware.
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FIG. 2. Evolution of a configuration in one-dimensional cellu-
lar automaton for one time step according to the modulo-two
rule given in Fig. 1. The values of the two end sites after the
time step depend on the values of sites not shown here.

value at the previous time step (s, =s “@®s®s *).

The additive superposition principle of Eq. (2.2) com-
bines values at different sites by addition modulo two (ex-
clusive disjunction). Combining values instead by con-
junction (Boolean multiplication) yields a superposition
principle for rules 0, 4, 50, and 254. Combining values by
(inclusive) disjunction (Boolean addition) yields a corre-
sponding principle for rules 0, 204, 250, and 254. It is
found that no other legal cellular automaton rules satisfy
superposition principles with any combining function.

The Boolean representation of cellular automaton rules
reveals that some rules are “peripheral” in the sense that
the value of a particular site depends on the values of its
two neighbors at the previous time step, but not on its
own previous value. Rules 0, 90, 160, and 250 are of the
form a,a,a;a,a,0a,0 and exhibit this property.

Having discussed features of possible local rules we
now outline their consequences for the evolution of ele-
mentary cellular automata. Sections III and IV present
more detailed quantitative analysis.

Figure 3 shows the evolution of all 32 possible legal cel-
lular automata from an initial configuration containing a
single site with value 1 (analogous to the growth of a
“crystal” from a microscopic “seed”). The evolution is
shown until a particular configuration appears for the
second time (a “cycle” is detected), or for at most 20 time
steps. Several classes of behavior are evident. In one
class, the initial 1 is immediately erased (as in rules 0 and
160), or is maintained unchanged forever (as in rules 4
and 36). Rules of this class are distinguished by the pres-
ence of the local rules 100—0 and 001 —0, which prevent
any propagation of the initial 1. A second class of rules
(exemplified by 50 or 122) copies the 1 to generate a uni-
form structure which expands by one site in each direc-
tion on each time step. These two classes of rules will be
termed “simple.” A third class of rules, termed “com-
plex,” and exemplified by rules 18, 22, and 90, yields non-
trivial patterns.

As a consequence of their locality, cellular automaton
rules define no intrinsic length scale other than the size of
a single site (or of a neighborhood of three sites) and no
intrinsic time scale other than the duration of a single
time step. The initial state consisting of a single site with
value 1 used in Fig. 3 also exhibits no intrinsic scale. The
cellular automaton configurations obtained in Fig. 3
should therefore also exhibit no intrinsic scale, at least in
the infinite time limit. Simple rules yield a uniform final
state, which is manifestly scale invariant. The scale in-
variance of the configurations generated by complex rules
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FIG. 3. Evolution of one-dimensional elementary cellular automata according to the 32 possible legal sets of rules, starting from a
state containing a single site with value 1. Sites with value 1 are represented by stars, and those with value 0 by blanks. The configu-
rations of the cellular automata at successive time steps are shown on successive lines. The time evolution is shown up to the point
where the system is detected to cycle (visiting a particular configuration for the second time), or for at most 20 time steps. The pro-
cess is analogous to the growth of a crystal from a microscope seed. A considerable variety of behavior is evident. The cellular auto-
mata which do not tend to a uniform state yield asymptotically self-similar fractal configurations.

is nontrivial. In the infinite time limit, the configurations
are “self-similar” in that views of the configuration with
different “magnifications” (but with the same “resolu-
tion”) are indistinguishable. The configurations thus ex-
hibit the same structure on all scales.

Consider as an example the modulo-two rule 90 (also
used as the example for Fig. 1 and in the discussion
above). This rule takes each site to be the sum modulo
two of its two nearest neighbors on the previous time step.
Starting from an initial state containing a single site with
value 1, the configuration it yields on successive time
steps is thus simply the lines of Pascal’s triangle modulo
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two, as illustrated in Fig. 4 (cf. Wolfram, 1982b). The
values of the sites are hence the values of binomial coeffi-
cients [or equivalently, coefficients of x' in the expansion
of (14x)"] modulo two. In the large time limit, the pat-
tern of sites with value 1 may be obtained by the recursive
geometrical construction (cf. Sierpinski, 1916; Abelson
and diSessa, 1981, Sec. 2.4) shown in Fig. 5. This geo-
metrical construction manifests the self-similarity (Man-
delbrot, 1977, 1982; Geffen et al., 1981) or “scale invari-
ance” of the resulting curve. Figure 3 shows that evolu-
tion of other complex cellular automata from a single
nonzero site yields essentially identical self-similar pat-
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FIG. 4. An algebraic construction for the configurations of a
cellular automaton starting from a state containing a single site
with value 1 and evolving according to the modulo-two rule 90.
The rule is illustrated in Fig. 1, and takes the value of a particu-
lar site to be the sum modulo two of the values of its two neigh-
boring sites at the previous time step. The value of a site at a
given time step is then just the value modulo two of the corre-
sponding binomial coefficient in Pascal’s triangle.
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lution from a single-site initial state for n time steps with
this rule is thus simply the coefficients of x’ in the expan-
sion of (x>+x+1)" modulo two. A geometrical con-
struction for the pattern obtained is given in Fig. 6.
Figure 7 shows examples of time evolution for some
cellular automata with illegal local rules (defined above)
which were omitted from Fig. 3. When the quiescence
condition is violated, successive time steps involve alter-
nation of 0 and 1 at infinity. When reflection symmetry
is violated, the configurations tend to undergo uniform
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A\ £ kb

FIG. 5. Sequence of steps in a geometrical construction for the
large time behavior of a cellular automaton evolving according
to the modulo-two rule 90. The final pattern is the limit of the
sequence shown here. It is a self-similar figure with fractal di-

mension log,3.

shifting. The self-similar patterns seen in Fig. 3 are also
found in cases such as rule 225, but are sheared by the
overall shifting. It appears that consideration of illegal as
well as “legal” cellular automaton rules introduces no
qualitatively new features.

Figure 3 showed the growth of patterns by cellular au-
tomaton evolution from a very simple initial state con-
taining a single nonzero site (seed). Figure 8 now illus-
trates time evolution from a disordered or “random” ini-
tial state according to each of the 32 legal cellular au-
tomaton rules. A specific “typical” initial configuration
was taken, with the value of each site chosen independent-
ly, with equal probabilities for values 0 and 1.* Just as in
Fig. 3, several classes of behavior are evident. The simple
rules exhibit trivial behavior, either yielding a uniform fi-
nal state or essentially preserving the form of the initial
state. Complex rules once again yield nontrivial behavior.
Figure 8 illustrates the remarkable fact that time evolu-
tion according to these rules destroys the independence of
the initial sites, and generates correlations between values
at separated sites. This phenomenon is the essence of
self-organization in cellular automata. An initially ran-
dom state evolves to a state containing long-range correla-
tions and structure. The bases of the “triangles” visible in
Fig. 8 are fluctuations in which a sequence of many adja-
cent cells have the same value. The length of these corre-
lated sequences is reduced by one site per time step, yield-
ing the distinctive triangular structure. Figure 8 suggests
that triangles of all sizes are generated. Section III con-
firms this impression through a quantitative analysis and
discusses universal features of the structures obtained.

The behavior of the cellular automata shown in Fig. 8
may be characterized in analogy with the behavior of
dynamical systems (e.g., Ott, 1981): simple rules exhibit
simple limit points or limit cycles, while complex rules
exhibit phenomena analogous to strange attractors.

The cellular automata shown in Fig. 8 were all assumed
to satisfy periodic boundary conditions. Instead of treat-
ing a genuinely infinite line of sites, the first and last sites

4 Here and elsewhere a standard linear congruential pseudoran-
dom number generator with recurrence relation x,,;
=(1103515245x, +12345) mod 2! was used. Results were
also obtained using other pseudorandom number generation
procedures and using random numbers derived from real-time
properties of a time-shared computer system.
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FIG. 6. Sequence of steps in a geometrical construction for the
large time behavior of a cellular automaton evolving according
to the modulo-two rule 150. The final pattern is the limit of the
sequence shown here. It is a self-similar figure with fractal di-
mension log,2¢~1.69 [where <p=(1+\/§)/2 is the golden ra-
tio]. An analogous construction for rule 90 was given in Fig. 5.

are identified, as if they lay on a circle of finite radius.
Cellular automata can also be rendered finite by imposing
null boundary conditions, under which sites beyond each
end are modified to maintain value zero, rather than
evolving according to the local rules. Figure 9 compares
results obtained with these two boundary conditions in a
simple case; no important qualitative differences are ap-
parent.

Finite one-dimensional cellular automata are similar to
a class of feedback shift registers (e.g., Golomb, 1967,
Berlekamp, 1968).° A feedback shift register consists of a
sequence of sites (“tubes”) carrying values a(i). At each
time step, the site values evolve by a shift a(i)=a(i—1)
and feedback a(0)=F[a(j,),a(j,), ...] where, j; give the
positions of “taps” on the shift register. An elementary
cellular automaton of length N corresponds to a feedback
shift register of length N with site values O and 1 and taps
at positions N —2, N —1, and N. The Boolean function F
defines the cellular automaton rule. [The additive rules
90 and 150 correspond to linear feedback shift registers in
which F is addition modulo two (exclusive disjunction).]
At each shift register time step, the value of one site is
updated according to the cellular automaton rule. After N
time steps, all N sites have been updated, and one cellular
automaton time step is complete. All interior sites are
treated exactly as in a cellular automaton, but the two end
sites evolve differently (their values depend on the two
preceding time steps).

lll. LOCAL PROPERTIES OF ELEMENTARY CELLULAR
AUTOMATA

We shall examine now the statistical analysis of config-
urations generated by time evolution of “elementary” cel-
lular automata, as illustrated in Figs. 3 and 8. This sec-
tion considers statistical properties of individual such
configurations; Sec. IV discusses the ensemble of all possi-
ble configurations. The primary purpose is to obtain a
quantitative characterization of the “self-organization”
pictorially evident in Fig. 8.

° This similarity may be used as the basis for a simple
hardware implementation of one-dimensional cellular automata
(Pearson et al., 1981; Hoogland et al., 1982; Toffoli, 1983).
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FIG. 7. Evolution of a selection of one-dimensional elementary cellular automata obeying illegal rules. Rules are considered illegal if
they violate reflection symmetry, which requires identical rules for 100 and 001 and for 110 and 011, or if they violate the quiescence
condition which requires that an initial state containing only O sites should remain unchanged. For example, rule 2 violates reflection
symmetry, and thus yields a uniformly shifting pattern, while rule 1 violates the quiescence condition and yields a pattern which

“flashes” from all O to all 1 in successive time steps.

A configuration may be considered disordered (or
essentially random) if values at different sites are statisti-
cally uncorrelated (and thus behave as “independent ran-
dom variables”). Such configurations represent a discrete
form of “white noise.” Deviations of statistical measures
for cellular automaton configurations from their values
for corresponding disordered configurations indicate or-
der, and signal the presence of correlations between values
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at different sites. An (infinite) disordered configuration is
specified by a single parameter, the independent probabili-
ty p for each site to have value 1. The description of an
ordered configuration requires more parameters.

Figure 10 shows a set of examples of disordered config-
urations with probabilities p=0.25, 0.5, and 0.75. Such
disordered configurations were used as the initial configu-
rations for the cellular automaton evolution shown in Fig.
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of self-organization. All the cellular automata shown are taken to satisfy periodic boundary conditions, so that their sites are effectively arranged on a circle.
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FIG. 9. Time evolution of a simple initial state according to the modulo-two rule 90, on a line of sites satisfying (a) periodic boun-
dary conditions (so that first and last sites are identified, and the sites are effectively arranged on a circle), and (b) null boundary con-
ditions (so that sites not shown are assumed always to have value 0). Changes in boundary conditions apparently have no significant
qualitative effect.
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8. Qualitative comparison of the configurations obtained
by this evolution with the disordered configurations of
Fig. 10 strongly suggests that cellular automata indeed
generate more ordered configurations, and exhibit a sim-
ple form of self-organization.

The simplest statistical quantity with which to charac-
terize a cellular automaton configuration is the average
fraction (density) of sites with value 1, denoted by p. For
a disordered configuration, p is given simply by the in-
dependent probability p for each site to have value 1.

We consider first the density p, obtained from a disor-
dered configuration by cellular automaton evolution for
one time step. When p =p=% (as in Fig. 8), a disordered
configuration contains all eight possible three-site neigh-
borhoods (illustrated in Fig. 1) with equal probability.
Applying a cellular automaton rule (specified, say, by a
binary sequence R, as in Fig. 1) to this initial state for one
time step (r=1) yields a configuration in which the frac-
tion of sites with value 1 is given simply by the fraction
of the eight possible neighborhoods which yield 1 accord-
ing to the cellular automaton rule. This fraction is given
by

p1 = #F1(R)/(#F(R)+#,(R)) = #,(R)/8, (3.1

where #4(S) denotes the number of occurrences of the
digit d in the binary representation of S. Hence, for exam-
ple, #,(10110110)=#,(182)=5 and #,(10110110)
= #,(182)=3. With cellular automaton rule 182, there-
fortsa, the density p after the first time step shown in Fig. 8
is ¢ if an infinite number of sites is included. The result
(3.1) may be generalized to initial states with p;é% by us-
ing the probabilities p(o) = p#'(o)(l—p)#°(a), for each
of the eight possible three-site neighborhoods o (such as
110) shown in Fig. 1, and adding the probabilities for
those o which yield 1 on application of the cellular au-
tomaton rule.

The function # ;(n) will appear several times in the
analysis given below. A graph of it for small » is given in
Fig. 11, and is seen to be highly irregular. For any n,
#1(n)+ #o(n) is the total number of digits ([logyn]) in
the binary representation of n, so that #(n)<log,n.
Furthermore, #,(2*n)=#,n) and for n<2X
#,(n+2¥)=#,(n)+1. Finally, one finds that

#in)=n— 3 |n/2].
=1
References to further results are given in Mcllroy (1974)
and Stolarsky (1977).

We now consider the behavior of the density p, ob-
tained after 7 time steps in the limit of large 7. When
7> 1, correlations induced by cellular automaton evolu-
tion invalidate the approach used in Eq. (3.1), although a
similar approach may nevertheless be used in deriving sta-
tistical approximations, as discussed below.

Figure 8 suggests that with some simple rules (such as
0, 32, or 72), any initial configuration evolves ultimately
to the null state p=0, although the length of transient
varies. For rule 0, it is clear that p=0 for all 7 >0. Simi-
larly, for rule 72, p=0 for 7>1. For rule 32, infinite
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FIG. 10. Examples of sets of disordered configurations in
which each site is chosen to have value 1 with independent
probability (a) 0.25, (b) 0.5, and (c) 0.75. Successive lines are in-
dependent. The configurations are to be compared with those
generated by cellular automaton evolution as shown in Fig. 8.
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FIG. 11. The number of occurrences #(n) of the binary digit
1 in the binary representation of the integer n [#(1)=1,
#.2)=1, #,(3)=2, #,4)=1, and so on]. The function is de-
fined only for integer n: values obtained for successive integer n
have nevertheless been joined by straight lines.

transients may occur, but the probability that a nonzero
value survives at a particular site for 7 time steps assum-
ing an initial disordered state with p=% i3 igrtRral))
Rule 254 yields p,, =1, with a probability (1—pg)*"*! for
a transient of length >7. Rule 204 is the “identity rule,”
which propagates any initial configuration unchanged and
yields p, =po. The “disjunctive superposition” principle
for rule 250 discussed in Sec. II implies p,, =1. For rule
50, qle “conjunctive superposition” principle yields
Po=7"

Other simple rules serve as “filters” for specific initial
sequences, yielding final densities proportional to the ini-
tial density of the sequences to be selected. For rule 4, the
final density is equal to the initial density of 101 se-
quences, so that p, =p§(1—po). For rule 36, p,, is deter-
mined by the density of initial 00100 and .1010101. ..
sequences and is approximately - ~ for Po—

Exact results for the behavior of p, with the modulo-
two rule 90 may be derived using the additive superposi-
tion property discussed in Sec. II.

Consider first the number of sites N\' with value 1 ob-
tained by evolution according to rule 90 from an initial
state containing a single site with value 1, as illustrated in
Fig. 3. Geometrical considerations based on Fig. 5 yield
the result®

N ) 3.2)

where the function #,(7) gives the number of oc-
currences of the digit 1 in the binary representation of the
integer 7, as defined above, and is illustrated in Fig. 11.
Equation (3.2) may be derived as follows. Consider the

6 This result has also been derived by somewhat lengthy alge-
braic means in Glaisher (1899), Fine (1947), Roberts (1957),
Kimball et al. (1958), and Honsberger (1976).

Rev. Mod. Phys., Vol. 55, No. 3, July 1983

figure generated by [log,7| (the number of digits in the
binary representation of 7) steps in the construction of
Fig. 5. The configuration obtained after 7 time steps of
cellular automaton evolution corresponds to a slice
through this figure, with a 1 at each point crossed by a
line of the figure, and O elsewhere. By construction, the
slice must lie in the lower half of the figure. Successive
digits in the binary representation of 7 determine whether
the slice crosses the upper (0) or lower (1) halves of suc-
cessively smaller triangles. The number of lines of the
figure crossed is multiplied by a factor each time the
lower half is chosen. The total number of sites with value
1 encountered is then given by a product of the factors of
two associated with each 1 digit in the binary representa-
tion of 7. Inspection of Fig. 5 also yields a formula for
the positions of all sites with value 1. With the original
site at position 0, the positions of sites with value 1 after 7
time steps are given by +(2] 422 - - )), where all pos-
sible combinations of signs are to be taken, and the j; cor-
respond to the positions at which the digit 1 appears in
the binary representation of 7, defined so that
Fla i PRt gl Lo, K.

Equation (3.2) shows that the density averaged over the
region of nonzero sites (“light cone”) in the rule 90 evolu-
tion of Fig. 3 is given by p, =N /(27 +1) and does not
tend to a definite limit for large 7. Nevertheless, the
time-average density
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