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Cellular automata are used as simple mathematical models to investigate self-organization in statistical 
mechanics. A detailed analysis is given of "elementary" cellular automata consisting of a sequence of sites 
with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to 
definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular 
automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions 
"",1.59 or "",1.69. With "random" initial configurations, the irreversible character of the cellular automa­
ton evolution leads to several self-organization phenomena. Statistical properties of the structures generat­
ed are found to lie in two universality classes, independent of the details of the initial state or the cellular 
automaton rules. More complicated cellular automata are briefly considered, and connections with dynami­
cal systems theory and the formal theory of computation are discussed. 
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The second law of thermodynamics implies that isolat­
ed microscopically reversible physical systems tend with 
time to states of maximal entropy and maximal "disor­
der." However, "dissipative" systems involving micro­
scopic irreversibility, or those open to interactions with 
their environment, may evolve from "disordered" to more 
"ordered" states. The states attained often exhibit a com­
plicated structure. Examples are outlines of snowflakes, 
patterns of flow in turbulent fluids, and biological sys­
tems. The purpose of this paper is to begin the investiga­
tion of cellular automata (introduced in Sec. II) as a class 
of mathematical models for such behavior. Cellular auto­
mata are sufficiently simple to allow detailed mathemati­
cal analysis, yet sufficiently complex to exhibit a wide 
variety of complicated phenomena. Cellular automata are 
also of sufficient generality to provide simple models for 
a very wide variety of physical, chemical, biological, and 
other systems. The ultimate goal is to abstract from a 
study of cellular automata general features of "self­
organizing" behavior and perhaps to devise universal laws 
analogous to the laws of thermodynamics. This paper 
concentrates on the mathematical features of the simplest 
cellular automata, leaving for future study more compli­
cated cellular automata and details of applications to 
specific systems. The paper is largely intended as an origi­
nal contribution, rather than a review. It is presented in 
this journal in the hope that it may thereby reach a wider 
audience than would otherwise be possible. An outline of 
some of its results is given in Wolfram (1982a). 

Investigations of simple "self-organization" phenomena 
in physical and chemical systems (Turing, 1952; Haken, 
1975, 1978, 1979, 1981; Nicolis and Prigogine, 1977; Lan-
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dauer, 1979; Prigogine, 1980; Nicolis et aI., 1981) have 
often been based on the Boltzmann transport differential 
equations (e.g., Lifshitz and Pitaevskii, 1981) (or its ana­
logs) for the time development of macroscopic quantities. 
The equations are obtained by averaging over an ensemble 
of microscopic states and assuming that successive col­
lisions between molecules are statistically uncorrelated. 
For closed systems (with reversible or at least unitary mi­
croscopic interactions) the equations lead to Boltzmann's 
H theorem, which implies monotonic evolution towards 
the macroscopic state of maximum entropy. The equa­
tions also imply that weakly dissipative systems (such as 
fluids with small temperature gradients imposed) should 
tend to the unique condition of minimum entropy produc­
tion. However, in strongly dissipative systems, several fi­
nal states may be possible, corresponding to the various 
solutions of the polynomial equations obtained from the 
large time limit of the Boltzmann equations. Details or 
"fluctuations" in the initial state determine which of 
several possible final states are attained, just as in a sys­
tem with multiple coexisting phases. Continuous changes 
in parameters such as external concentrations or tempera­
ture gradients may lead to discontinuous changes in the 
final states when the number of real roots in the polyno­
mial equations changes, as described by catastrophe 
theory (Tqom, 1975). In this way, "structures" with 
discrete boundaries may be formed from continuous 
models. However, such approaches become impractical 
for systems with very many degrees of freedom, and 
therefore cannot address the formation of genuinely com­
plex structures. 

More general investigations of self-organization and 
"chaos" in dynamical systems have typically used simple 
mathematical models. One approach (e.g., Ott, 1981) 
considers dissipative nonlinear differential equations (typ­
ically derived as idealizations of Navier-Stokes hydro­
dynamic equations). The time evolution given particular 
initial conditions is represented by a trajectory in the 
space of variables described by the differential equations. 
In the simplest cases (such as those typical for chemical 
concentrations described by the Boltzmann transport 
equations), all trajectories tend at large times to a small 
number of isolated limit points, or approach simple 
periodic limit cycle orbits. In other cases, the trajectories 
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may instead concentrate on complicated and apparently 
chaotic surfaces ("strange attractors"). Nearly linear sys­
tems typically exhibit simple limit points or cycles. When 
nonlinearity is increased by variation of external parame­
ters, the number of limit points or cycles may increase 
without bound, eventually building up a strange attractor 
(typically exhibiting a statistically self-similar structure in 
phase space). A simpler approach (e.g., Ott, 1981) in­
volves discrete time steps, and considers the evolution of 
numbers on an interval of the real line under iterated 
mappings. As the nonlinearity is increased, greater num­
bers of limit points and cycles appear, followed by essen­
tially chaotic behavior. Quantitative features of this ap­
proach to chaos are found to be universal to wide classes 
of mappings. Notice that for both differential equations 
and iterated mappings, initial conditions are specified by 
real numbers with a potentially infinite number of signifi­
cant digits. Complicated or seemingly chaotic behavior is 
a reflection of sensitive dependence on high-order digits 
in the decimal expansions of the numbers. 

Models based on cellular automata provide an alterna­
tive approach, involving discrete coordinates and vari­
ables as well as discrete time steps. They exhibit compli­
cated behavior analogous to that found with differential 
equations or iterated mappings, but by virtue of their 
simpler construction are potentially amenable to a more 
detailed and complete analysis. 

Section II of this paper defines and introduces cellular 
automata and describes the qualitative behavior of ele­
mentary cellular automata. Several phenomena charac­
teristic of self-organization are found. Section III gives a 
quantitative statistical analysis of the states generated in 
the time evolution of cellular automata, revealing several 
quantitative universal features. Section IV describes the 
global analysis of cellular automata and discusses the re­
sults in the context of dynamical systems theory and the 
formal theory of computation. Section V considers brief­
ly extensions to more complicated cellular automata. Fi­
nally, Sec. VI gives some tentative conclusions. 

II. INTRODUCTION TO CELLULAR AUTOMATA 

Cellular automata are mathematical idealizations of 
physical systems in which space and time are discrete, 
and physical quantities take on a finite set of discrete 
values. A cellular automaton consists of a regular uni­
form lattice (or "array"), usually infinite in extent, with a 
discrete variable at each site ("cell"). The state of a cellu­
lar automaton is completely specified by the values of the 
variables at each site. A cellular automaton evolves in 
discrete time steps, with the value of the variable at one 
site being affected by the values of variables at sites in its 
"neighborhood" on the previous time step. The neighbor­
hood of a site is typically taken to be the site itself and all 
immediately adjacent sites. The variables at each site are 
updated simultaneously ("synchronously"), based on the 
values of the variables in their neighborhood at the 
preceding time step, and according to a definite set of "lo­
cal rules." 
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Cellular automata were originally introduced by von 
Neumann and Ulam (under the name of "cellular spaces") 
as a possible idealization of biological systems (von Neu­
mann, 1963, 1966), with the particular purpose of model­
ling biological self-reproduction. They have been applied 
and reintroduced for a wide variety of purposes, and re­
ferred to by a variety of names, including "tessellation au­
tomata," "homogeneous structures," "cellular structures," 
"tessellation structures," and "iterative arrays." 

Physical systems containing many discrete elements 
with local interactions are often conveniently modelled as 
cellular automata. Any physical system satisfying dif­
ferential equations may be approximated as a cellular au­
tomaton by introducing finite differences and discrete 
variables.) Nontrivial cellular automata are obtained 
whenever the dependence on the values at each site is non­
linear, as when the system exhibits some form of "growth 
inhibition." A very wide variety of examples may be con­
sidered; only a few are sketched here. In the most direct 
cases, the cellular automaton lattice is in position space. 
At a microscopic level, the sites may represent points in a 
crystal lattice, with values given by some quantized ob­
servable (such as spin component) or corresponding to the 
types of atoms or units. The dynamical Ising model (with 
kinetic energy terms included) and other lattice spin sys­
tems are simple cellular automata, made nondeterministic 
by "noise" in the local rules at finite temperature. At a 
more macroscopic level, each site in a cellular automaton 
may represent a region containing many molecules (with a 
scale size perhaps given by an appropriate correlation 
length), and its value may label one of several discrete 
possible phases or compositions. In this way, cellular au­
tomata may be used as discrete models for nonlinear 
chemical systems involving a network of reactions cou­
pled with spatial diffusion (Greenberg et aI., 1978). They 
have also been used in a (controversial) model for the evo­
lution of spiral galaxies (Gerola and Seiden, 1978; Schewe, 
1981). Similarly, they may provide models for kinetic as­
pects of phase transitions (e.g., Harvey et al., 1982). For 
example, it is possible that growth of dendritic crystals 
(Langer, 1980) may be described by aggregation of 
discrete "packets" with a local growth inhibition effect 
associated with local releases of latent heat, and thereby 
treated as a cellular automaton [Witten and Sander (1981) 
discuss a probabilistic model of this kind, but there are in­
dications that the probabilistic elements are inessential]. 
The spatial structure of turbulent fluids may perhaps be 
modelled using cellular automata by approximating the 
velocity field as a lattice of cells, each containing one or 
no eddies, with interactions between neighboring cells. 
Physical systems may also potentially be described by cel­
lular automata in wave-vector or momentum space, with 
site values representing excitations in the corresponding 
modes. 

1 The discussion here concentrates on systems first order in 
time; a more general case is mentioned briefly in Sec. IV. 
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Many biological systems have been modelled by cellular 
automata (Lindenmayer, 1968; Herman, 1969; Ulam, 
1974; Kitagawa, 1974; Baer and Martinez, 1974; Rosen, 
1981) (cf. Barricelli, 1972). The development of structure 
and patterns in the growth of organisms often appears to 
be governed by very simple local rules (Thompson, 1961; 
Stevens, 1974) and is therefore potentially well described 
by a cellular automaton model. The discrete values at 
each site typically label types of living cells, approximated 
as growing on a regular spatial lattice. Short-range or 
contact interactions may lead to expression of different 
genetic characteristics, and determine the cell type. Sim­
ple nonlinear rules may lead to the formation of complex 
patterns, as evident in many plants and animals. Exam­
ples include leaf and branch arrangements (e.g., Stevens, 
1974) and forms of radiolarian skeletons (e.g., Thompson, 
1961). Simple behavior and functioning of organisms 
may be modelled by cellular automata with site values 
representing states of living cells or groups of cells [Burks 
(1973) and Flanigan (1965) discuss an example in heart fi­
brillation]. The precise mathematical formulation of such 
models allows the behavior possible in organisms or sys­
tems with particular construction or complexity to be in­
vestigated and characterized (e.g., von Neumann, 1966). 
Cellular automata may also describe populations of non­
mobile organisms (such as plants), with site values corre­
sponding to the presence or absence of individuals 
(perhaps of various types) at each lattice point, with local 
ecological interactions. 

Cellular automata have also been used to study prob­
lems in number theory and their applications to tapestry 
design (Miller, 1970, 1980; ApSimon, 1 970a, 1 970b; Sut­
ton, 1981). In a typical case, successive differences in a 
sequence of numbers (such as primes) reduced with a 
small modulus are taken, and the geometry of zero re­
gions is investigated. 

As will be discussed in Sec. IV, cellular automata may 
be considered as parallel processing computers (cf. Man­
ning, 1977; Preston et al., 1979). As such, they have been 
used, for example, as highly parallel multipliers (Atrubin, 
1965; Cole, 1969), sorters (Nishio, 1981), and prime num­
ber sieves (Fischer, 1965). Particularly in two dimensions, 
cellular automata have been used extensively for image 
processing and visual pattern recognition (Deutsch, 1972; 
Sternberg, 1980; Rosenfeld, 1979). The computational 
capabilities of cellular automata have been studied exten­
sively (Codd, 1968; Burks, 1970; Banks, 1971; Aladyev, 
1974, 1976; Kosaraju, 1974; Toffoli, 1977b), and it has 
been shown that some cellular automata could be used as 
general purpose computers, and may therefore be used as 
general paradigms for parallel computation. Their locali­
ty and simplicity might ultimately permit their im­
plementation at a molecular level. 

The notorious solitaire computer game "Life" (Con­
way, 1970; Gardner, 1971, 1972; Wainwright, 1971-1973; 
Wainwright, 1974; Buckingham, 1978; Berlekamp et al., 
1982; R. W. Gosper, private communications) (qualita­
tively similar in some respects to the game of "Go") is an 
example of a two-dimensional cellular automaton, to be 
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discussed briefly in Sec. V. 
Until Sec. V, we shall consider exclusively one­

dimensional cellular automata with two possible values of 
the variables at each site ("base 2") and in which the 
neighborhood of a given site is simply the site itself and 
the sites immediately adjacent to it on the left and right. 
We shall call such cellular automata elementary. Figure 1 
specifies one particular set of local rules for an elementary 
cellular automaton. On the top row, all 23=8 possible 
values of the three variables in the neighborhood are 
given, and below each one is given the value achieved by 
the central site on the next time step according to a par­
ticular local rule. Figure 2 shows the evolution of a par­
ticular state of the cellular automaton through one time 
step according to the local rule given in Fig. 1. 

The local rules for a one-dimensional neighborhood­
three cellular automaton are described by an eight-digit 
binary number, as in the example of Fig. 1. (In specifying 
cellular automata, we use this binary number interchange­
ably with its decimal equivalent.) Since any eight-digit 
binary number specifies a cellular automaton, there are 
28 =256 possible distinct cellular automaton rules in one 
dimension with a three-site neighborhood. Two inessen­
tial restrictions will usually be imposed on these rules. 
First, a cellular automaton rule will be considered "ille­
gal" unless a "null" or "quiescent" initial state consisting 
solely of 0 remains unchanged. This forbids rules whose 
binary specification ends with a 1 (and removes symmetry 
in the treatment of 0 and 1 sites). Second, the rules must 
be reflection symmetric, so that 100 and 001 (and 110 and 
011) yield identical values. These restrictions2 leave 32 
possible "legal" cellular automaton rules of the form 
a)a2a3a4a2aSa40. 

The local rules for a cellular automaton may be con­
sidered as a Boolean function of the sites within the 
neighborhood. Let sll(m) be the value of site m at time 
step n. As a first example consider the "modulo-two" 
rule 90 (also used as the example for Fig. 1). According to 
this rule, the value of a particular site is simply the sum 
modulo two of the values of its two neighboring sites on 
the previous time step. The Boolean equivalent of this 
rule is therefore 

(2.1) 

or schematically s + =s -es +, where e denotes addition 
modulo two ("exclusive disjunction" or "inequality"). 
Similarly, rule 18 is equivalent to s + =s V (s -es +) 
[where s denotes sll(m)], rule 22 to s+=SV(s-/\S+), 
rule 54 to s+ =se(s- Vs+), rule 150 to s+ =s-eses+, 
and so on. Designations s - and s + always enter symme­
trically in legal cellular automaton rules by virtue of re-

2 The quiescence condition is required in many applications to 
forbid "instantaneous propagation" of value-one sites. The re­
flection symmetry condition guarantees isotropy as well as 
homogeneity in cellular automaton evolution. 
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III 110 101 l...Q.Q. 011 010 Q.Q...L 000 
o I --0- I --1- --0- I 0 

FIG. 1. Example of a set of local rules for the time evolution of 
a one-dimensional elementary cellular automaton. The vari­
ables at each site may take values 0 or 1. The eight possible 
states of three adjacent sites are given on the upper line. The 
lower line then specifies a rule for the time evolution of the cel­
lular automaton by giving the value to be taken by the central 
site of the three on the next time step. The time evolution of the 
complete cellular automaton is obtained by simultaneous appli­
cation of these rules at each site for each time step. The rule 
given is the modulo-two rule: the value of a site at a particular 
time step is simply the sum modulo two of the values of its two 
neighbors at the previous time step. Any possible sequence of 
eight binary digits specifies a cellular automaton. 

flection symmetry. The Boolean function representation 
of cellular automaton rules is convenient for practical im­
plementation on standard serial processing digital com­
puters.3 

Some cellular automaton rules exhibit the important 
simplifying feature of "additive superposition" or "addi­
tivity." Evolution according to such rules satisfies the su­
perposition principle 

(2.2) 

which implies that the configurations obtained by evolu­
tion from any initial configuration are given by appropri­
ate combinations of those found in Fig. 3 for evolution 
from a single nonzero site. Notice that such additivity 
does not imply linearity in the real number sense of Sec. I, 
since the addition is over a finite field. Cellular automata 
satisfy additive superposition only if their rule is of the 
form a)a20a3a2a)a30 with a3=a)EBa2' Only rules 0, 
90, 150, and 204 are of this form. Rules 0 and 204 are 
trivial; 0 erases any initial configuration, and 204 main­
tains any initial configuration unchanged (performing the 
identity transformation at each time step). Rule 90 is the 
modulo-two rule discussed above, and takes a particular 
site to be the sum modulo two of the values of its two 
neighbors at the previous time step, as in Eq. (2.1). Rule 
150 is similar. It takes a particular site to be the sum 
modulo two of the values of its two neighbors and its own 

3 The values of a sequence of (typically 32) sites are represent­
ed by bits in a single computer word. Copies of this word shift­
ed one bit to the left and one bit to the right are obtained. Then 
the cellular automaton rule may be applied in parallel to all bits 
in the words using single machine instructions for each word­
wise Boolean operation. An analogous procedure is convenient 
in simulation of two-dimensional cellular automata on computer 
systems with memory-mapped displays, for which application 
of identical Boolean operations to each display pixel is usually 
implemented in hardware or firmware. 
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FIG. 2. Evolution of a configuration in one-dimensional cellu­
lar automaton for one time step according to the modulo-two 
rule given in Fig. 1. The values of the two end sites after the 
time step depend on the values of sites not shown here. 

value at the previous time step (s + =s -EBsEBs +). 
The additive superposition principle of Eq. (2.2) com­

bines values at different sites by addition modulo two (ex­
clusive disjunction). Combining values instead by con­
junction (Boolean multiplication) yields a superposition 
principle for rules 0, 4, 50, and 254. Combining values by 
(inclusive) disjunction (Boolean addition) yields a corre­
sponding principle for rules 0, 204, 250, and 254. It is 
found that no other legal cellular automaton rules satisfy 
superposition principles with any combining function. 

The Boolean representation of cellular automaton rules 
reveals that some rules are "peripheral" in the sense that 
the value of a particular site depends on the values of its 
two neighbors at the previous time step, but not on its 
own previous value. Rules 0, 90, 160, and 250 are of the 
form a)a2a)a2a20a20 and exhibit this property. 

Having discussed features of possible local rules we 
now outline their consequences for the evolution of ele­
mentary cellular automata. Sections III and IV present 
more detailed quantitative analysis. 

Figure 3 shows the evolution of all 32 possible legal cel­
lular automata from an initial configuration containing a 
single site with value 1 (analogous to the growth of a 
"crystal" from a microscopic "seed"). The evolution is 
shown until a particular configuration appears for the 
second time (a "cycle" is detected), or for at most 20 time 
steps. Several classes of behavior are evident. In one 
class, the initial 1 is immediately erased (as in rules 0 and 
160), or is maintained unchanged forever (as in rules 4 
and 36). Rules of this class are distinguished by the pres­
ence of the local rules 100--+0 and 001--+0, which prevent 
any propagation of the initial 1. A second class of rules 
(exemplified by 50 or 122) copies the 1 to generate a uni­
form structure which expands by one site in each direc­
tion on each time step. These two classes of rules will be 
termed "simple." A third class of rules, termed "com­
plex," and exemplified by rules 18,22, and 90, yields non­
trivial patterns. 

As a consequence of their locality, cellular automaton 
rules define no intrinsic length scale other than the size of 
a single site (or of a neighborhood of three sites) and no 
intrinsic time scale other than the duration of a single 
time step. The initial state consisting of a single site with 
value 1 used in Fig. 3 also exhibits no intrinsic scale. The 
cellular automaton configurations obtained in Fig. 3 
should therefore also exhibit no intrinsic scale, at least in 
the infinite time limit. Simple rules yield a uniform final 
state, which is manifestly scale invariant. The scale in­
variance of the configurations generated by complex rules 
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FIG. 3. Evolution of one-dimensional elementary cellular automata according to the 32 possible legal sets of rules, starting from a 
state containing a single site with value I. Sites with value I are represented by stars, and those with value 0 by blanks. The configu­
rations of the cellular automata at successive time steps are shown on successive lines. The time evolution is shown up to the point 
where the system is detected to cycle (visiting a particular configuration for the second time), or for at most 20 time steps. The pro­
cess is analogous to the growth of a crystal from a microscope seed. A considerable variety of behavior is evident. The cellular auto­
mata which do not tend to a uniform state yield asymptotically self-similar fractal configurations. 

is nontrivial. In the infinite time limit, the configurations 
are "self-similar" in that views of the configuration with 
different "magnifications" (but with the same "resolu­
tion") are indistinguishable. The configurations thus ex­
hibit the same structure on all scales. 

Consider as an example the modulo-two rule 90 (also 
used as the example for Fig. 1 and in the discussion 
above). This rule takes each site to be the sum modulo 
two of its two nearest neighbors on the previous time step. 
Starting from an initial state containing a single site with 
value 1, the configuration it yields on successive time 
steps is thus simply the lines of Pascal's triangle modulo 

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983 

two, as illustrated in Fig. 4 (cf. Wolfram, 1982b). The 
values of the sites are hence the values of binomial coeffi­
cients [or equivalently, coefficients of x i in the expansion 
of (1 +x )/1] modulo two. In the large time limit, the pat­
tern of sites with value 1 may be obtained by the recursive 
geometrical construction (cf. Sierpinski, 1916; Abelson 
and diSessa, 1981, Sec. 2.4) shown in Fig. 5. This geo­
metrical construction manifests the self-similarity (Man­
delbrot, 1977, 1982; Geffen et al., 1981) or "scale invari­
ance" of the resulting curve. Figure 3 shows that evolu­
tion of other complex cellular automata from a single 
nonzero site yields essentially identical self-similar pat-
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FIG. 4. An algebraic construction for the configurations of a 
cellular automaton starting from a state containing a single site 
with value I and evolving according to the modulo-two rule 90. 
The rule is illustrated in Fig. 1, and takes the value of a particu­
lar site to be the sum modulo two of the values of its two neigh­
boring sites at the previous time step. The value of a site at a 
given time step is then just the value modulo two of the corre­
sponding binomial coefficient in Pascal's triangle. 

terns. An exception is rule 150, for which the value of 
each site is determined by the sum modulo two of its own 
value and the values of its two neighbors on the previous 
time step. The sequence of binary digits obtained by evo­
lution from a single-site initial state for n time steps with 
this rule is thus simply the coefficients of xi in the expan­
sion of (x 2 + X + 1)/1 modulo two. A geometrical con­
struction for the pattern obtained is given in Fig. 6. 

Figure 7 shows examples of time evolution for some 
cellular automata with illegal local rules (defined above) 
which were omitted from Fig. 3. When the quiescence 
condition is violated, successive time steps involve alter­
nation of 0 and 1 at infinity. When reflection symmetry 
is violated, the configurations tend to undergo uniform 
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FIG. 5. Sequence of steps in a geometrical construction for the 
large time behavior of a cellular automaton evolving according 
to the modulo-two rule 90. The final pattern is the limit of the 
sequence shown here. It is a self-similar figure with fractal di­

mension log23. 

shifting. The self-similar patterns seen in Fig. 3 are also 
found in cases such as rule 225, but are sheared by the 
overall shifting. It appears that consideration of illegal as 
well as "legal" cellular automaton rules introduces no 
qualitatively new features . 

Figure 3 showed the growth of patterns by cellular au­
tomaton evolution from a very simple initial state con­
taining a single nonzero site (seed). Figure 8 now illus­
trates time evolution from a disordered or "random" ini­
tial state according to each of the 32 legal cellular au­
tomaton rules. A specific "typical" initial configuration 
was taken, with the value of each site chosen independent­
ly, with equal probabilities for values 0 and 1.4 Just as in 
Fig. 3, several classes of behavior are evident. The simple 
rules exhibit trivial behavior, either yielding a uniform fi­
nal state or essentially preserving the form of the initial 
state. Complex rules once again yield nontrivial behavior. 
Figure 8 illustrates the remarkable fact that time evolu­
tion according to these rules destroys the independence of 
the initial sites, and generates correlations between values 
at separated sites. This phenomenon is the essence of 
self-organization in cellular automata. An initially ran­
dom state evolves to a state containing long-range correla­
tions and structure. The bases of the "triangles" visible in 
Fig. 8 are fluctuations in which a sequence of many adja­
cent cells have the same value. The length of these corre­
lated sequences is reduced by one site per time step, yield­
ing the distinctive triangular structure. Figure 8 suggests 
that triangles of all sizes are generated. Section III con­
firms this impression through a quantitative analysis and 
discusses universal features of the structures obtained. 

The behavior of the cellular automata shown in Fig. 8 
may be characterized in analogy with the behavior of 
dynamical systems (e.g., Ott, 1981): simple rules exhibit 
simple limit points or limit cycles, while complex rules 
exhibit phenomena analogous to strange attractors. 

The cellular automata shown in Fig. 8 were all assumed 
to satisfy periodic boundary conditions. Instead of treat­
ing a genuinely infinite line of sites, the first and last sites 

4 Here and elsewhere a standard linear congruential pseudoran­
dom number generator with recurrence relation Xn + I 
=(l 103515245xn + 12345) mod2J1 was used. Results were 
also obtained using other pseudorandom number generation 
procedures and using random numbers derived from real-time 
properties of a time-shared computer system. 
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FIG. 6. Sequence of steps in a geometrical construction for the 
large time behavior of a cellular automaton evolving according 
to the modulo-two rule 1 SO. The final pattern is the limit of the 
sequence shown here. It is a self-similar figure with fractal di­
mension log22tp~ 1. 69 [where tp = (l + V5) /2 is the golden ra­
tio] . An analogous construction for rule 90 was given in Fig. 5. 

are identified, as if they lay on a circle of finite radius. 
Cellular automata can also be rendered finite by imposing 
null boundary conditions, under which sites beyond each 
end are modified to maintain value zero, rather than 
evolving according to the local rules. Figure 9 compares 
results obtained with these two boundary conditions in a 
simple case; no important qualitative differences are ap­
parent. 

Finite one-dimensional cellular automata are similar to 
a class of feedback shift registers (e.g., Golomb, 1967; 
Berlekamp, 1968).5 A feedback shift register consists of a 
sequence of sites ("tubes") carrying values a (i). At each 
time step, the site values evolve by a shift a(i)=a(i-1) 
and feedback a(O)=F[a(h),a(h), ... ] where,j; give the 
positions of "taps" on the shift register. An elementary 
cellular automaton of length N corresponds to a feedback 
shift register of length N with site values 0 and 1 and taps 
at positions N - 2, N - 1, and N. The Boolean function F 
defines the cellular automaton rule. [The additive rules 
90 and 150 correspond to linear feedback shift registers in 
which F is addition modulo two (exclusive disjunction).] 
At each shift register time step, the value of one site is 
updated according to the cellular automaton rule. After N 
time steps, all N sites have been updated, and one cellular 
automaton time step is complete. All interior sites are 
treated exactly as in a cellular automaton, but the two end 
sites evolve differently (their values depend on the two 
preceding time steps). 

III. LOCAL PROPERTIES OF ELEMENTARY CELLULAR 

AUTOMATA 

We shall examine now the statistical analysis of config­
urations generated by time evolution of "elementary" cel­
lular automata, as illustrated in Figs. 3 and 8. This sec­
tion considers statistical properties of individual such 
configurations; Sec. IV discusses the ensemble of all possi­
ble configurations. The primary purpose is to obtain a 
quantitative characterization of the "self-organization" 
pictorially evident in Fig. 8. 

S This similarity may be used as the basis for a simple 
hardware implementation of one-dimensional cellular automata 
(Pearson et a!., 1981; Hoogland et a!., 1982; Toffoli, 1983). 
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FIG. 7. Evolution of a selection of one-dimensional elementary cellular automata obeying illegal rules. Rules are considered illegal if 
they violate reflection symmetry, which requires identical rules for 100 and 001 and for 110 and Oil, or if they violate the quiescence 
condition which requires that an initial state containing only 0 sites should remain unchanged. For example, rule 2 violates reflection 
symmetry, and thus yields a unifonnly shifting pattern, while rule 1 violates the quiescence condition and yields a pattern which 
"flashes" from all 0 to all 1 in successive time steps. 

A configuration may be considered disordered (or 
essentially random) if values at different sites are statisti­
cally uncorre1ated (and thus behave as "independent ran­
dom variables"). Such configurations represent a discrete 
fonn of "white noise." Deviations of statistical measures 
for cellular automaton configurations from their values 
for corresponding disordered configurations indicate or­
der, and signal the presence of correlations between values 
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at different sites. An (infinite) disordered configuration is 
specified by a single parameter, the independent probabili­
ty p for each site to have value 1. The description of an 
ordered configuration requires more parameters. 

Figure 10 shows a set of examples of disordered config­
urations with probabilities p =0.25, 0.5, and 0.75. Such 
disordered configurations were used as the initial configu­
rations for the cellular automaton evolution shown in Fig. 
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of self·organization. All the cellular automata shown are taken to satisfy periodic boundary conditions, so that their sites are effectively arranged on a circle. 
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FIG. 9. Time evolution of a simple initial state according to the modulo-two rule 90, on a line of sites satisfying (a) periodic boun­
dary conditions (so that first and last sites are identified, and the sites are effectively arranged on a circle), and (b) null boundary con­
ditions (so that sites not shown are assumed always to have value 0). Changes in boundary conditions apparently have no significant 
qualitative effect. 

Rev. Mod. Phys., Vol. 55, No. 3, July 1983 



612 Wolfram: Statistical mechanics of cellular automata 

8. Qualitative comparison of the configurations obtained 
by this evolution with the disordered configurations of 
Fig. 10 strongly suggests that cellular automata indeed 
generate more ordered configurations, and exhibit a sim­
ple form of self-organization. 

The simplest statistical quantity with which to charac­
terize a cellular automaton configuration is the average 
fraction (density) of sites with value 1, denoted by p. For 
a disordered configuration, P is given simply by the in­
dependent probability p for each site to have value 1. 

We consider first the density PI obtained from a disor­
dered configuration by cellular automaton evolution for 
one time step. When p =P= + (as in Fig. 8), a disordered 
configuration contains all eight possible three-site neigh­
borhoods (illustrated in Fig. 1) with equal probability. 
Applying a cellular automaton rule (specified, say, by a 
binary sequence R, as in Fig. 1) to this initial state for one 
time step (1'= 1) yields a configuration in which the frac­
tion of sites with value 1 is given simply by the fraction 
of the eight possible neighborhoods which yield 1 accord­
ing to the cellular automaton rule. This fraction is given 
by 

PI = #1(R)/(#o(R)+#I(R)) = #1(R)/8, (3.1) 

where #d(S) denotes the number of occurrences of the 
digit d in the binary representation of S. Hence, for exam­
ple, #1(10110110)= #1(182)=5 and #0(10110110) 
= #0(182)=3. With cellular automaton rule 182, there­
fore, the density p after the first time step shown in Fig. 8 
is + if an infinite number of sites is included. The result 
(3.1) may be generalized to initial states withpoi=+ by us­
ing the probabilities p(a) = p #l(U)(1_p)#o(u), for each 
of the eight possible three-site neighborhoods a (such as 
110) shown in Fig. 1, and adding the probabilities for 
those a which yield 1 on application of the cellular au­
tomaton rule. 

The function # I (n) will appear several times in the 
analysis given below. A graph of it for small n is given in 
Fig. 11, and is seen to be highly irregular. For any n, 
#I(n)+ #o(n) is the total number of digits (flog2n II in 
the binary representation of n, so that # I (n ) ~ log2n. 
Furthermore, #1(2kn)=#I(n) and for n<2k, 
# I(n +2k)= # I(n)+ 1. Finally, one finds that 

n - ~ lnliJ 
;=1 

References to further results are given in McIlroy (1974) 
and Stolarsky (1977). 

We now consider the behavior of the density p.,. ob­
tained after l' time steps in the limit of large 1'. When 
l' > 1, correlations induced by cellular automaton evolu­
tion invalidate the approach used in Eq. (3.1), although a 
similar approach may nevertheless be used in deriving sta­
tistical approximations, as discussed below. 

Figure 8 suggests that with some simple rules (such as 
0, 32, or 72), any initial configuration evolves ultimately 
to the null state p=O, although the length of transient 
varies. For rule 0, it is clear that p=O for all l' > O. Simi­
larly, for rule 72, p=O for l' > 1. For rule 32, infinite 
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FIG. 10. Examples of sets of disordered configurations in 
which each site is chosen to have value 1 with independent 
probability (a) 0.25, (b) 0.5, and (c) 0.75. Successive lines are in­
dependent. The configurations are to be compared with those 
generated by cellular automaton evolution as shown in Fig. 8. 

I 
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8r----------.-----------.-----. 

o~--------~----------~----~ o n 128 

FIG. 11. The number of occurrences # I(n) of the binary digit 
1 in the binary representation of the integer n [# 1(1)= 1, 
#1(2)= 1, #1(3)=2, #M)= 1, and so on]. The function is de­
fined only for integer n: values obtained for successive integer n 

have nevertheless been joined by straight lines. 

transients may occur, but the probability that a nonzero 
value survives at a particular site for 'T time steps assum­
ing an initial disordered state with P=+ is 2- 3(2-r+ 1). 

Rule 254 yields p"" = 1, with a probability (l-PO)2-r+ I for 
a transient of length 2 'T. Rule 204 is the "identity rule," 
which propagates any initial configuration unchanged and 
yields p"" =Po. The "disjunctive superposition" principle 
for rule 250 discussed in Sec. II implies p"" = 1. For rule 
50, the "conjunctive superposition" principle yields 

I 
P",,="2' 

Other simple rules serve as "filters" for specific initial 
sequences, yielding final densities proportional to the ini­
tial density of the sequences to be selected. For rule 4, the 
final density is equal to the initial density of 101 se­
quences, so that P",,=P6(l-po). For rule 36, p"" is deter­
mined by the density of initial 00100 and ... 1010101. . . 

. . I I l' I sequences and IS approximate y 16 lor PO="2 ' 
Exact results for the behavior of PT with the modulo­

two rule 90 may be derived using the additive superposi­
tion property discussed in Sec. II. 

Consider first the number of sites N~ I) with value 1 ob­
tained by evolution according to rule 90 from an initial 
state containing a single site with value 1, as illustrated in 
Fig. 3. Geometrical considerations based on Fig. 5 yield 
the result6 

N (I ) - 2#I(T ) 
T - , (3 .2) 

where the function # I ('T) gives the number of oc­
currences of the digit 1 in the binary representation of the 
integer 'T, as defined above, and is illustrated in Fig. 11. 
Equation (3.2) may be derived as follows. Consider the 

6 This result has also been derived by somewhat lengthy alge­
braic means in Glaisher (1899), Fine (1947), Roberts (1957), 
Kimball et al. (1958), and Honsberger (1976). 
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figure generated by [lOg2'T 1 (the number of digits in the 
binary representation of 'T) steps in the construction of 
Fig. 5. The configuration obtained after 'T time steps of 
cellular automaton evolution corresponds to a slice 
through this figure, with a 1 at each point crossed by a 
line of the figure, and 0 elsewhere. By construction, the 
slice must lie in the lower half of the figure. Successive 
digits in the binary representation of 'T determine whether 
the slice crosses the upper (0) or lower (1) halves of suc­
cessively smaller triangles. The number of lines of the 
figure crossed is multiplied by a factor each time the 
lower half is chosen. The total number of sites with value 
1 encountered is then given by a product of the factors of 
two associated with each 1 digit in the binary representa­
tion of 'T. Inspection of Fig. 5 also yields a formula for 
the positions of all sites with value 1. With the original 
site at position 0, the positions of sites with value 1 after 'T 

time steps are given by ±Ctl ±(2h ± ... ), where all pos­
sible combinations of signs are to be taken, and the j; cor­
respond to the positions at which the digit 1 appears in 
the binary representation of 'T, defined so that 
'T = 2il + 2h + ... andh>h> .. ·. 

Equation (3.2) shows that the density averaged over the 
region of nonzero sites ("light cone") in the rule 90 evolu­
tion of Fig. 3 is given by PT =N~ I) /(2'T + 1) and does not 
tend to a definite limit for large 'T. Nevertheless, the 
time-average density 

T=T 

lh=(l/T) l:PT 
T=O 

tends to zero (as expected from the geometrical construc­
tion of Fig. 5) like Tlog23-2 _ T-0.42. 7 Results for initial 
states containing a finite number of sites with value 1 
may be obtained by additive superposition. If the initial 
configuration is one which would be reached by evolution 
from a single site after, say, 'To time steps, then the result­
ing density is given by Eq. (3.2) with the replacement 
'T-'T -'To. Only a very small fraction of initial configu­
rations may be treated in this way, since evolution from a 
single site generates only one of the 2k possible configura­
tions in which the maximum separation between nonzero 
sites is k. For small or highly regular initial configura­
tions, results analogous to (3.2) may nevertheless be de­
rived. Statistical results for evolution from disordered in­
itial states may also be derived. Equation (3.2) implies 
that after exactly 'T = 2i time steps, an initial state contain­
ing a single nonzero site evolves to a configuration with 
only two nonzero sites. At this point, the value of a par­
ticular site at position n is simply the sum modulo two of 
the initial values of sites at positions n -'T and n +'T. If 
we start from a disordered initial configuration, the densi­
ty at such time steps is thus given by PT =2j=2po(l-po). 

7 This form is strictly correct only for T=2k. For 

T=2k(1+0), there is a correction factor ~(1+010g23)/ 
log 3 

(1 +0) 2, which lies between 0.86 and 1, with a broad 
minimum around 0=0.3. 
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In general, the value of a site at time step T is a sum 
modulo two of the initial values of N;I)=2#,(r) sites, 
which each have value 1 with probability Po. If each of a 
set of k sites has value 1 with probability p, then the prob­
ability that the sum of the values at the sites will be odd 
(equal to 1 modulo two) is 

l: [7]pi(1_p )k-i = T[1-(1-2p )k] . 
i odd 

Thus the density of sites with value 1 obtained by evolu­
tion for T time steps from an initial state with density Po 
according to cellular automaton rule 90 is given by 

1 2#I(T) 
Pr = ·d l -(1-2po) ] . (3.3) 

This result is shown as a function of T for the case 
Po=0.2 in Fig. 12. For large T, #1(T)=O(lOg2T), except 
at a set of points of measure zero, and Eq. (3.3) implies 

1 
that Pr-+2" as T-+ 00 for almost all T (so long as Po'1"=O). 

Cellular automaton rule 150 shares with rule 90 the 
property of additive superposition. Inspection of the re­
sults for rule 150 given in Fig. 3 indicates that the value 
of a particular site depends on the values of at least three 
initial sites (this minimum again being achieved when 

k 1 3 T=2 ), so that 1 Pr - 2"1 ~ 11-2po 1 . Between the ex-
ceptional time steps T=2k, the Pr for rule 150 tends to be 

rule 182 

o ~ ____ ~ ______ ~ ______ ~ ____ ~ ____ ~ 
o 30 40 50 

T 

FIG. 12. Average density PT of sites with value I obtained by 
time evolution according to various cellular automaton rules 
starting from a disordered initial state with po=O.2. The addi­
tivity of the modulo-two rule 90 may be used to derive the exact 
result (3.2) for PT' The irregularities appear for time steps at 
which the value of each site depends on the values of only a few 
initial sites. For the nonadditive complex rules exemplified by 
18 and 182, the values of sites at time step 1" depend on the 
values of 0 (1") initial sites, and PT tends smoothly to a definite 
limit. This limit is independent of the density of the initial 
disordered state. 
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much flatter than that for rule 90 (illustrated in Fig. 12). 
An exact result may be obtained, but is more complicated 
than in the case of rule 90. The geometrical construction 
of Fig. 6 shows that for rule 150, N;1) is a product of fac­
tors X(j) associated with each sequence of j ones (delimit­
ed by zeroes) in the binary representation of T. The ex­
pression X(j) is given by the recurrence relation 
X(j) = (2j ± I)X(j -I) where the upper (lower) sign is tak­
en for j odd (even), and X(1)=3 [so that X(2)=5, 
X(3)= 11 and so on]. [N;1) thus measures "sequence 
correlations" in T.] The density is then ~iven in analogy 

1 N(lr 
with Eq. (3.3) by Pr = 2"[ 1-(1-2po) T ]. 

Some aspects of the large-time behavior of nonadditive 
complex cellular automata may be found using a 
correspondence between nonadditive and additive rules 
(Grassberger, 1982). Special classes of configurations in 
nonadditive cellular automata effectively evolve according 
to additive rules. For example, with the nonadditive com­
plex rule 18, a configuration in which, say, all even­
numbered sites have value zero evolves after one time step 
to a configuration with all odd-numbered sites zero, and 
with the values of even-numbered sites given by the sums 
modulo two of their odd-numbered neighbors on the pre­
vious time step, just as for the additive rule 90. An arbi­
trary initial configuration may always be decomposed into 
a sequence of (perhaps small) "domains," in each of 
which either all even-numbered sites or all odd-numbered 
sites have value zero. These domains are then separated 
by "domain walls" or "kinks." The kinks move in the 
cellular automaton evolution and may annihilate in pairs. 
The motion of the kinks is determined by the initial con­
figuration; with a disordered initial configuration, the 
kinks initially follow approximately a random walk, so 
that their mean displacement increases with time accord­
ing to (x 2 )=t (Grassberger, 1982), and the paths of the 
kinks are fractal curves. This implies that the average 
kink density decreases through annihilation as if by dif­
fusion processes according to the formula (Pkink) 
_(41Tt)-1/2 (Grassberger, 1982). Thus after a sufficiently 
long time all kinks (at least from any finite initial config­
uration) must annihilate, leaving a configuration whose 
alternate sites evolve according to the additive cellular au­
tomaton rule 90. Each point on the "front" formed by 
the kink paths yields a pattern analogous to Fig. 5. The 
superposition of such patterns, each diluted by the inser­
tion of alternate zero sites, yields configurations with an 
average density + (Grassberger, 1982). The large number 
of sites on the "front" suppresses the fluctuations found 
for complete evolution according to additive rule 90. 
Starting with a disordered configuration of any nonzero 
density, evolution according to cellular automaton rule 18 
therefore yields an asymptotic density +. The existence of 
a universal P«>, independent of initial density Po, is 
characteristic of complex cellular automaton rules. 

Straightforward transformations on the case of rule 18 
above then yield asymptotic densities P«> = + for the com­
plex nonadditive rules 146, 122, and 126, and an asymp­
totic density + for rule 182, again all independent of the 
initial density Po (Grassberger, 1982). No simple domain 
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structure appears with rule 22, and the approach fails. 
Simulations yield a numerical estimate p"" =0.35±0.02 
for evolution from disordered configurations with any 
nonzero Po. 

Figure 12 shows the behavior of p". for the complex 
nonadditive cellular automata 18 and 182 with Po=0.2, 
and suggests that the final constant values p"" =0.25 and 
p"" =0.75 are approached roughly exponentially with 
time. 

One may compare exact results for limiting densities of 
cellular automata with approximations obtained from a 
statistical approach (akin to "mean-field theory"). As dis­
cussed above, cellular automaton evolution generates 
correlations between values at different sites. Neverthe­
less, as a simple approximation, one may ignore these 
correlations, and parametrize all configurations by their 
average density p, or, equivalently, by the probabilities p 
and q = 1-p, assumed independent, for each site to have 
value 1 and 0, respectively. With this approximation, the 
time evolution of the density is given by a master equa­
tion 

~ = r(O-l) - r(1-0) , 
B1' 

nO-l) = P'(OOllOOll A R) , 

r(1-0) = P'(llOOllOOA -R), 

P = [p3,p2q,p2q,pq2,p2q,pq2,pq2,q3J 

(3.4) 

The term n 0_1) represents the average fraction of sites 
whose values change from 0 to 1 in each time step, and 
n 1-0) the fraction changing from 1 to O. R is the 
binary specification of a cellular automaton rule, and the 
binary number with which it is "masked" (digitwise con­
junction) selects local rules for three-site neighborhoods 
with appropriate values at the center site. P is the vector 
of probabilities for the possible three-site neighborhoods, 
assuming each site independently to have value 1 with 
probability p =p, and to have value 0 with probability 
q = 1-p = 1-p. The dot indicates that each element of 
this vector is to be multiplied by the corresponding digit 
of the binary sequence, and the results are to be added to­
gether. The equilibrium density p"" is achieved when 

~=O. 
B1' 

This condition yields a polynomial equation for p and 
thus p"" for each of the legal cellular automaton rules. 
For rule 90, the equation is pq2_p 3 = p_2p2 
= p( 1-2p) = 0, which has solutions p =0 (null state for 
all time) and p = +. Rule 18 yields the equation 
pq2_2p2q_p 3 = p(1-4p+2p2) = 0, which has the 
solutions p =0 and p = 1-1/v'2~0.293, together with 
the irrelevant solution p = 1 + 1 /V2 > 1. Rule 182 yields 
2pq2_p2q = p(2-3p)(1-p) = 0, giving p=O, 1, +. 
For rules 90 and 18, these approximate results are close to 
the exact results 0.5 and 0.25. For rule 182, there is a sig­
nificant discrepancy from the exact value 0.75. Neverthe­
less, for all complex cellular automaton rules, it appears 
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that the master equation (3.4) yields equilibrium densities 
within 10-20% of the exact values. The discrepancies 
are a reflection of the violation of the Markovian approxi­
mation required to derive Eq. (3.4) and thus of the pres­
ence of correlations induced by cellular automaton evolu­
tion. 

In the discussion above, a definite value for the density 
p". at each time step was found by averaging over all sites 
of an infinite cellular automaton. If instead the density is 
estimated by averaging over blocks containing a finite 
number of sites b, a distribution of density values is ob­
tained. In a disordered state, the central limit theorem en­
sures that for large b, these density estimates follow a 
Gaussian distribution with standard deviation ~ 1 /Vb. 
Evolution according to any of the complex cellular au­
tomaton rules appears accurately to maintain this Gauss­
ian distribution, while shifting its mean as illustrated in 
Fig. 12. Density in cellular automaton configurations 
thus obeys the "law of large numbers." Instead of taking 
many blocks of sites at a single time step, one might esti­
mate the density at "equilibrium" by averaging results for 
a single block over many time steps. For nonadditive 
complex cellular automaton rules, it appears that these 
two procedures yield the same limiting results. However, 
the large fluctuations in average density visible in Fig. 12 
at particular time steps for additive rules (90 and 150) 
would be lost in a time average. 

Cellular automaton evolution is supposed to generate 
correlations between values at different sites. The very 
simplest measure of these correlations is the two-point 
correlation function c(2)(r) = (S(m )S(m +r) - (S(m) 
X (S(m +r), where the average is taken over all possible 
positions m in the cellular automaton at a fixed time, and 
S(k) takes on values -1 and + 1 when the site at posi­
tion k has values 0 and 1, respectively. A disordered con­
figuration involves no correlations between values at dif­
ferent sites and thus gives C(2)(r) =0 for r > 0 
[C(2)(0)= 1-(2p-l)2]. With the single-site initial state 
of Fig. 3, evolution of complex cellular automata yields 
configurations with definite periodicities. These periodi­
cities give rise to peaks in C(2)( r). At time step 1', the 
largest peaks occur when r=2k and the digit correspond­
ing to 2k appears in the binary decomposition of 1'; small-

k k 
er peaks occur when r = 2 1 ± 2 2, and so on. For the ad-
ditive cellular automaton rules 90 and 150, a convolution 
of this result with the correlation function for any initial 
state gives the form of C(2)(r) after evolution for l' time 
steps. With these rules, the correlation function obtained 
by evolution from a disordered initial configuration thus 
always remains zero. For nonadditive rules, nonzero 
short-range correlations may nevertheless be generated 
from disordered initial configurations. The form of 
C(2)(r) for rule 18 at large times is shown in Fig. 13, and 
is seen to fall roughly exponentially with a correlation 
length - 2. The existence of a nonzero correlation length 
in this case is our first indication of the generation of or­
der by cellular automaton evolution. 

Figures 3 and 8 show that the evolution of complex cel­
lular automata generates complicated patterns with a dis-
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tinctive structure. The average density and the two-point 
correlation function are too coarse as statistical measures 
to be sensitive to this structure. Individual configurations 
appear to contain long sequences of correlated sites, punc­
tuated by disordered regions. The two-dimensional picture 
formed by the succession of configurations in time is 
characteristically peppered with triangle structures. 
These triangles are formed when a long sequence of sites 
which suddenly all attain the same value, as if by a fluc­
tuation, is progressively reduced in length by "ambient 
noise." Let T(i)(n) denote the density of triangles (in posi­
tion and time) with base length n and filled with sites of 
value i. It is convenient to begin by considering the 
behavior of this density and then to discuss its conse­
quences for the properties of individual configurations, 
whose long sequences typically correspond to sections 
through the triangles. 

Consider first evolution from a simple initial state con­
taining a single site with value 1. Figure 3 shows that in 
this case, all complex cellular automata (except rule 150) 
generate a qualitatively similar pattern, containing many 
congruent triangles whose bases have lengths 2k. A 
geometrical construction for the limiting pattern obtained 
at large times was given in Fig. 5. At each successive 
stage in the construction, the linear dimensions (base 
lengths) of the triangles added are halved, and their num­
ber is multiplied by a factor 3. In the limit, therefore, 
T(n/2)-3T(n), (with n=2k ), and hence 

T() -log23 -1.59 
n - n - n (3.5) 

[requiring exactly one triangle of size 'T /2 at time step 'T 

0.8r-----r------,---,------, 

0.6 

o 5 10 15 20 

r 

FIG. 13. Two-point correlation function C (2l(r) for configura­
tions generated at large times by evolution according to cellular 
automaton rule 18 from any disordered initial configuration. 
C(2)(r) is defined as (S(m)S(m +r)-(S(m)(S(m +r), 

where the average is taken over all sites m of the cellular au­
tomaton, and S (k) = ± 1 when site k has values 1 and 0, respec­
tively. No correlations are present in a disordered configura­
tion, so that C(2l(r)=0 for r >0. Evolution according to certain 
complex cellular automaton rules, such as 18, yield nonzero but 
exponentially damped correlations. 
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fixes the normalization as T( n ) = (2n h) -log23]. The re­
sult (3.5) demonstrates that the patterns obtained from 
complex cellular automata in Fig. 3 not only contain 
structure on all scales (in the form of triangles of all 
sizes), but also exhibit a scale invariance or self similarity 
which implies the same structure on all scales (cf. Man­
delbrot, 1982; Willson, 1982). The power law form of the 
triangle density (3.5) is independent of the absolute scale 
of n. 

Self-similar figures on, for example, a plane may in 
general be characterized as follows. Find the minimum 
number N(a) of squares with side a necessary to cover all 
parts of the figure (all sites with nonzero values in the cel­
lular automaton case). The figure is self-similar or scale 
invariant if rescaling a changes N(a) by a constant factor 
independent of the absolute size of a. In this case, 
N(a) -a -D, where D is defined to be the Hausdorff­
Besicovitch or fractal dimension (Mandelbrot, 1977, 1982) 
of the figure. A figure filling the plane would give D = 2, 
while a line would give D = 1. Intermediate values of D 
indicate clustering or intermittency. According to this 
definition, the cellular automaton pattern of Fig. 5 has 
fractal dimension D=log23~1.59. 

Figure 6 gives the construction analogous to Fig. 5 for 
the pattern generated by rule 150 in Fig. 3. In this case, 
the triangle density satisfies the two-term recurrence rela­
tion T(n=2k )=2T(2k +1)+4T(2k+2) with, say, T(1)=O 

and T(2)=2. For large k, this yields (in analogy with the 
Fibonacci series)s 

T(n )-n -log2(2tp) =n -log2(1+v5) -n 1.69 (3.6) 

where cp=(1+v'5)/2~1.618 is the "golden ratio" which 
solves the equation x 2=x + 1. The limiting fractal di­
mension of the pattern in Fig. 6 generated by cellular au­
tomaton rule 150 is thus log2(2cp)= 1 +log2(cpb1.69. 

The self similarity of the patterns generated by time 
evolution with complex cellular automaton rules in Fig. 3 
is shared by almost all the configurations appearing at 
particular time steps and corresponding to lines through 
the patterns. If the fractal dimension of the two­
dimensional patterns is D, then the fractal dimension of 
almost all the individual configurations is D - 1. The 
configurations obtained at, for example, time steps 'T of 
the form 2k are members of an exceptional set of measure 
zero, for which no fractal dimension is defined. Almost 
all configurations generated from a single initial site by 
complex cellular automaton rules are thus self-similar, 
and (except for rule 150) are characterized by a fractal di-

8 For small k, the triangle density in this case does not behave 
as a pure power of 2k. Whereas the solution to anyone-term re­
currence relation, of the type found for cellular automaton rule 
90, is a pure power, the solution to a p-term recurrence relation 
is in general a sum of p powers, with each exponent given by a 
root of the characteristic polynomial equation. In the high-order 
limit, the solutions are dominated by the term with the highest 
exponent (corresponding to the largest root of the equation). 
Complex roots yield oscillatory behavior [as in f(k) 
= - f(k -1)+ f(k -2); f(O)=O, f( 1)= 1]. 
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mension D = log23 - 1 = log2( + k:",O. 59. The second fonn 
may be deduced directly from the geometrical construc­
tion of Fig. 5. For rule 150, the configurations have frac­
tal dimension D =log2q!. 

Figure 14 shows patterns generated by evolution with a 
selection of complex . cellular automaton rules from initial 
states containing a few sites with value 1, extending over 
a region of size no. Comparison with Fig. 3 demonstrates 
that in most cases the patterns obtained even after many 
time steps differ from those generated with a single initial 
site. A few exceptional initial configurations (such as the 
one used for the first rule 90 example in Fig. 14) coincide 
with configurations reached by evolution from a single in­
itial site and therefore yield a similar pattern, appropriate­
ly shifted in time. In the general case, Fig. 14 suggests 
that the fonn of the initial state detennines the number of 
triangles with size n ;s no, but does not affect the density 
of triangles with n »no. As a simple example consider 
the modulo-two rule 90, whose additive superposition 
property implies that the final pattern obtained from an 
arbitrary initial state is simply a superposition of the pat­
terns which would be generated from each of the nonzero 
initial sites in isolation. These latter patterns were shown 
in Fig. 5, and involve the generation of a triangle of size 
2k at time step 2k. The superposition of such patterns 
yields at time step 2k a triangle of size at least 2k_2no. 

This conclusion apparently holds also for nonadditive 
complex cellular automata, so that, in general, for 
n »no, the density of triangles follows the fonn (3.5), as 
for a single site initial state. The patterns thus exhibit 
self-similarity for features large compared to the intrinsic 
scale defined by the "size" of the initial state. One there­
fore concludes that patterns which "grow" from any sim­
ple initial state according to any of the "complex" cellular 
automaton rules (except 150) share the universal feature 
of self similarity, characterized by a fractal dimension 
log23. On this basis, one may then conjecture that given 
suitable geometry (perhaps in more than one dimension, 
and possibly with more than three sites in a neighbor­
hood), many of the wide variety of systems found to ex­
hibit self-similar structure (Mandelbrot, 1977, 1982) at­
tain this structure through local processes which follow 
cellular automaton rules. 

Having considered the case of simple initial configura­
tions, we now tum to the case of evolution from disor­
dered initial configurations, illustrated in Fig. 8. Figure 
15 shows the first 300 time steps in the evolution of cellu­
lar automaton 126, starting from a disordered initial state 
with density p=0.5. Triangles of all sizes appear to be 
generated (the largest appearing in the figure has n =27). 
Figure 16 shows the density of triangles T(n) obtained at 
large times by evolution according to rule 126 and all of 
the other complex cellular automaton rules. The figure 
reveals the remarkable fact that for large n, all nonaddi­
tive rules yield the same T(n), distinct from that for the 
additive rules (90 and 150). All the results are well fit by 
the fonn 

T(n) _ A -n . (3.7) 

Rev. Mod. Phys., Vol. 55, No.3, July 1983 

For nonadditive rules A - ~, while for the additive rules 
A - 2. The same results are obtained at large times regard­
less of the density of the initial state. Thus the spectrum 
of triangles generated by complex cellular automaton evo­
lution is universal, independent both of the details of the 
initial state, and of the precise cellular automaton rule 
used. 

The behavior (3.8) of the triangle density with disor­
dered initial states is to be contrasted with that of (3.5) for 
simple initial states. The precise fonn of an initial state 
of finite extent no affects the pattern generated only at 
length scales ;sno: at larger length scales the pattern 
takes on a universal self-similar character. A disordered 
initial state of infinite extent affects the pattern generated 
at all length scales and for all times. Triangles of all sizes 
are nevertheless obtained, so that structure is generated on 
all scales, as suggested by Fig. 15. However, the pattern 
is not self-similar, but depends on the absolute scale de­
fined by the spacing between sites. 

Disordered configurations are defined to involve no sta­
tistical correlations between values at different sites. 
They thus correspond to a discrete fonn of white noise 
and yield a flat spatial frequency spectrum. One may also 
consider "pseudodisordered" configurations in which the 
value of each individual site is chosen randomly, but ac­
cording to a distribution which yields statistical correla­
tions between different sites, and a nontrivial spatial 
Fourier spectrum. For example, a Brownian configura­
tion (with spatial frequency spectrum lIk 2) is obtained by 
assigning a value to each site in succession, with a certain 
probability for the value to differ from one site to the 
next (as in a random walk). The patterns generated by 
cellular automaton from such initial configurations may 
differ from those obtained with disordered (white noise) 
initial configurations. Complex nonadditive cellular auto­
mata evolving from a Brownian initial state yield patterns 
whose triangle density T( n ) decreases less rapidly at large 
n than for disordered initial configurations: the "long­
range order" of the initial state leads to the generation of 
longer-range fluctuations. In the extreme limit of a 
homogeneous initial state (such as . . . 11111. .. or 
... 10101. .. ), cellular automaton evolution preserves the 
homogeneity, and no finite structures are generated. 

The appearance of triangles over a series of time steps 
in the evolution of complex cellular automata from disor­
dered initial states reflects the generation of long se­
quences of correlated sites in individual cellular automa­
ton configurations. This effect is measured by the "se­
quence density" Q(j)(n), defined as the density of se­
quences of exactly n adjacent sites with the same value i 
(bordered by sites with a different value). Thus, for ex­
ample, Q(O)(4) gives the density of 100001 sequences. 
Q(O)(n) clearly satisfies the sum rule 

00 

l: nQ(O)(n) = 1-p. 
n=1 

In a disordered configuration with density p = 1-q, 
Q(O)(n )_p2q n for large n. Any sequence longer than two 
sites in a complex cellular automaton must yield a trian-
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FIG. 14. Twenty-five time steps in the evolution of several simple initial configurations according to cellular automaton rules 90, 126, and 218. Configurations generated by rule 90 
obey additive superposition (under addition modulo two). The first initial state taken is exceptional for rules 90 and 218, since it occurs in evolution from a single initial site, as shown 
in Fig. 3, so that the final pattern is a shifted form of that found in Fig. 3. For other initial states, the patterns obtained deviate substantially from those of Fig. 3. However, features 
with sizes much larger than the extent of the initial state remain unchanged. For complex cellular automaton rules such as 90 and 126, such features share the self-similarity found in 
Fig. 3. 
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FIG. 15. Configurations obtained by evolution for 300 time 
steps from an initial disordered configuration with p = 0.5 ac­
cording to cellular automaton rule 126. The fluctuations visible 
in the form of triangles and apparent at small scales in Fig. 8 
are seen here to occur on all scales. The largest triangle in this 
sample has a base length of 27 sites. 

gle, leading to the sum rule 

00 

Q(nb~[2T(i)/i] . 
;=11 

Thus the Q(n) obtained at large times by evolution from 
a disordered initial state should follow the same exponen­
tial form (3.8) as T(n). 

Figure 17 shows the sequence density Q(O)(n) obtained 
at various time steps in the evolution of rule 126 from a 
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n 
FIG. 16. Density T(n) of triangle structures generated in the 
evolution of all the possible complex cellular automata from 
disordered initial configurations with density Po=O. 5. Triangles 
are evident in Figs. 8 and 16. They are formed when a sequence 
of sites suddenly attain the same value, but the length of the se­
quence is progressively reduced on subsequent time steps, until 
the apex of the triangle is reached. The appearance of triangles 
is a simple indication of self-organization. The triangle density 
T( n) is defined only at integer values of n, but these points have 
been joined in the figure. For large n, the triangle densities for 
all complex cellular automata are seen to tend towards one of 
two limiting forms. The group tending to the upper curve are 
the nonadditive complex cellular automata 18,22, 122, 126, 146, 
and 182. The additive rules 90 and 150 follow the lower curve. 
In both cases, T(n) falls off exponentially with n, in contrast to 
the power law form found for the self-similar patterns of Figs. 
3, 5, and 14. 

disordered initial state, as illustrated in Fig. 15. At each 
time step, the QW)(n) for a disordered configuration (il­
lustrated in Fig. 10) with the same average density has 
been subtracted. The resulting difference vanishes by 
definition at T =0, but Fig. 17 shows that for T ~ 1, the 
cellular automaton evolution yields a nonzero difference. 
After a few time steps, the cellular automaton tends to an 
equilibrium state containing an excess of long sequences 
of sites with value 0, and a deficit of short ones. This fi­
nal equilibrium QW)(n) does not depend on the density of 
the initial disordered configuration. Starting from any 
disordered initial state (random noise), repeated applica­
tion of the local cellular automaton rules thus generates 
ordered configurations whose statistical properties, as 
measured by sequence densities, differ from those of cor­
responding disordered configurations. The impression of 
self-organization in individual configurations given by 
Fig. 8 is thus quantitatively confirmed. 

As suggested by the sum rule, the QW)(n) for complex 
cellular automata with disordered initial states follow the 
exponential behavior (3.7) found for the T(n). Again, the 
parameter}.. has a universal value - + for all nonadditive 
cellular automaton rules and - 2 for additive ones. If all 
configurations of the cellular automata were disordered, 
then the sequence density would behave at large n as 
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30 

FIG. 17. Density QW)(n ) of sequences of exactly n successive 
sites with value 0 (delimited by sites with value 1) in configura­
tions generated by 'T steps in time evolution according to cellular 
automaton rule 126, starting from an initial disordered state 
with density p=0.5. [The function Q W) (n) is defined only for 
integer n: points are joined for ease of identification.] At each 
time step, the density of sequences in a disordered configuration 
with the same average total density has been subtracted. This 
difference vanishes for 'T = 0 by definition. The nonzero value 
shown in the figure for 'T ~ 1 is a manifestation of self­
organization in the cellular automaton, suggested qualitatively 
by comparison of Figs. 8 and 10. For large 'T, an equilibrium 
state is reached, which exhibits an excess of long sequences and 
a deficit of short ones. 

(l_p)n and depend on total average density p for the con­
figurations. The form (3.5) yields sequence correlations 
with the same exponential behavior, but with a fixed A, 
universal to all the nonadditive complex cellular automa­
ton rules, and irrespective of the final densities to which 
they lead. (The universal form may be viewed as corre­
sponding to an "effective density" ~0.25.) 

Cellular automata are usually defined to evolve accord­
ing to definite deterministic local rules. In modelling 
physical or biological systems it is, however, sometimes 
convenient to consider cellular automata whose local rules 
involve probabilistic elements or noise (cf. Griffeath, 
1970; Schulman and Seiden, 1978; Gach et al., 1978). 
The simplest procedure is to prescribe that at each time 
step the value obtained by application of the deterministic 
rule at each site is to be reversed with a probability K (and 
with each site treated independently). (If an energy is as­
sociated with the reversal of a site, K gives the Boltzmann 
factor corresponding to a finite temperature heat bath.) 
Figure 18 shows the effects of introducing such noise in 
the evolution of cellular automaton rule 126. The struc­
tures generated are progressively destroyed as K increases. 
Investigation of densities and correlation functions indi­
cates that the transition to disorder is a continuous one, 
and no phenomenon analogous to a "phase transition" is 
found. 
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FIG. 18. Configurations generated from a disordered initial 
state (with Po=O. 5) by the evolution of the complex nonadditive 
cellular automaton 126, in the presence of noise which causes 
values obtained at each site to be reversed with probability K at 
every time step. (a) is for K =0 (no "noise"), (b) for K =0.1, (c) 
for K=0.2, and (d) for K=0.5. As K increases, the structure 
generated is progressively destroyed. No discontinuity in 
behavior as a function of K is found. 
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IV. GLOBAL PROPERTIES OF ELEMENTARY CELLULAR 

AUTOMATA 

Section III analyzed the behavior of cellular automata 
by considering the statistical properties of the set of 
values of sites in individual cellular automaton configura­
tions. The alternative approach taken in this section con­
siders the statistical properties of the set (ensemble) 
comprising all possible complete configurations of a cellu­
lar automaton (in analogy with the r-space approach to 
classical statistical mechanics). Such an approach pro­
vides connections with dynamical systems theory (Ott, 
1981) and the formal theory of computation (Minsky, 
1967; Arbib, 1969; Manna, 1974; Hopcroft and Ullman, 
1979; Beckman, 1980), and yields a view of self­
organization phenomena complementary to that 
developed in Sec. III. Cellular automaton rules may be 
considered as a form of "symbolic dynamics" (e.g., Alek­
seev and Yakobson, 1981), in which the degrees of free­
dom in the system are genuinely discrete, rather than be­
ing continuous but assigned to discrete "bins." 

As in Sec. III, we examine here only elementary cellular 
automata. Some results on global properties of more 
complicated cellular automata will be mentioned in 
Sec. V. 

For most of this section, it will be convenient to consid­
er "finite" cellular automata, containing only a finite 
number of sites N. There are a total of 2N possible con­
figurations for such a cellular automaton. Each configu­
ration is uniquely specified by a length N binary integer 
whose digits give the values of the corresponding sites.9 

(A configuration of an infinite cellular automaton would 
correspond to a binary real number.) The evolution of a 
finite cellular automaton depends on the boundary condi­
tions applied. We shall usually assume periodic boundary 
conditions, in which the first and last sites are identified, 
as if the sites lay on a circle of circumference N. One 
could alternatively take an infinite sequence of sites, but 
assume that all those outside the region of length N have 
value O. Results obtained with these two choices were 
compared in Fig. 9, and no important qualitative differ­
ences were found. Most of the results derived in this sec­
tion are also insensitive to the form of boundary condi­
tions assumed. However, several of the later ones depend 
sensitively on the value of N taken. 

Cellular automaton rules define a transformation from 
one sequence of binary digits to another. The rules thus 
provide a mapping from the set of binary numbers of 
length N onto itself. For the trivial case of rule 0, all 
binary numbers are mapped to zero. Figure 19 shows the 
mappings corresponding to evolution for one and five 

9 An alternative specification would take each configuration to 
correspond to one of the 2N vertices of an N-dimensional hyper­
cube, labeled by coordinates corresponding to the values of the 
N sites. Points corresponding to configurations differing by 
values at a single site are then separated by a unit distance in 
N-dimensional space. 
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FIG. 19. Mapping in the set of 512 possible configurations of a 
length nine finite cellular automaton corresponding to evolution 
for T time steps according to the modulo-two rule 90. Each pos­
sible configuration is represented by the decimal equivalent of 
the binary number whose digits give the values at each of its 
sites. The horizontal axis gives the number specifying the initial 
configuration; the vertical axes that for the final configuration. 
Each initial configuration is mapped to a unique final configu­
ration. 

time steps according to cellular automaton rule 90 with 
N = 9. The mapping corresponding to one time step is 
seen to maintain some nearby sets of configurations. 
After five time steps, however, the evolution is seen to 
map configurations roughly uniformly, so that the final 
configurations obtained from nearby initial configurations 
are essentially uncorrelated. 

A convenient measure of distance in the space of cellu­
lar automaton configurations is the "Hamming distance" 
H (s 1>S 2) [familiar from the theory of error-correcting 
codes (Peterson and Weldon, 1972)], defined as the num­
ber of digits (bits) which differ between the binary se­
quences SI and S2' [Thus in Boolean form, 
H(s 1>S2) = # I(S 1 $S2 ).] Particular configurations corre­
spond to points in the space of all possible configurations. 
Under cellular automaton evolution, each initial configu­
ration traces out a trajectory in time. If cellular automa­
ton evolution is "stochastic," then the trajectories of near­
by points (configurations) must diverge (exponentially) 
with time. Consider first the case of two initial configu­
rations (say, S. and S2) which differ by a change in the 
value at one site (and are thus separated by unit Hamming 
distance). After l' time steps of cellular automaton evolu­
tion, this initial difference may affect the values of at 
most 21' sites (so that H ~ 21'). However, for simple cellu­
lar automaton rules, the difference remains localized to a 
few sites, and the total Hamming distance tends rapidly 
to a small constant value. The behavior for complex cel­
lular automaton rules differs radically between additive 
rules (such as 90 and 150) and nonadditive ones. For ad­
ditive rules, the difference obtained after l' time steps is 
given simply by the evolution of the initial difference (in 
this case a single nonzero site) for l' time steps. The Ham­
ming distance at time step l' is thus given by the number 
of nonzero sites in the configuration obtained by evolu­
tion from a single site, and for rule 90 has the form 
H r =2#I(r) , as illustrated in Fig. 20(a). The average 
Hamming distance, smoothed over many time steps, 
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FIG. 20. Divergence in behavior of disordered configurations 
initially differing by a change in the value of a single site under 
cellular automaton evolution. The Hamming distance H be­
tween two configurations is defined as the number of bits (site 
values) which differ between the configurations. (a) shows the 
evolution of the Hamming distance between two configurations 
of the additive cellular automaton 90 (modulo-two rule); (b) 
shows the corresponding Hamming distance for the nonadditive 
cellular automaton 126; and (c) gives the actual difference 
(modulo two) between the configurations of cellular automaton 
126 for the first few time steps. For nonadditive rules [case (b)], 
H r -1", while for additive rules [case (a)], after time averaging, 
Hr _1"0.59. 
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behaves as H1"=7"log23-1~7"0. S9 For nonadditive rules, 
the difference between configurations obtained through 
cellular automaton evolution no longer depends only on 
the difference between the initial configurations. Figure 
20(c) shows the difference between configurations ob­
tained by evolution according to the nonadditive cellular 
automaton rule 126. The lack of symmetry in the pattern 
is a reflection of the dependence on the values of multiple 
initial sites. Figure 20(b) shows the Hamming distance 
corresponding to this difference. Apart from small fluc­
tuations, it is seen to increase linearly with 7", tending at 
large 7" to the form H1"~7". This Hamming distance is the 
same as would be obtained by comparing sequences of 27" 
sites in two disordered configurations with density 0.5. 
Thus a change in the value of a small number of initial 
sites is amplified by the evolution of a nonadditive cellu­
lar automaton, and leads to configurations with a linearly 
increasing number of essentially uncorrelated sites. 
(Changes in single sites may sometimes be eradicated after 
a single time step; this exceptional behavior occurs for 
cellular automaton rule IS, but is always absent if more 
than one adjacent site is reversed.) A bundle of initial tra­
jectories therefore diverges with time into an exponential­
ly increasing volume. 

One may specify a statistical ensemble of states for a 
finite cellular automaton by giving the probability for 
each of the 2N possible configurations. In a collection of 
many disordered states with density p = +, each possible 
cellular automaton configuration is asymptotically popu­
lated with equal probability. Such a collection of states 
will be termed an "equiprobable ensemble," and may be 
considered "completely disorganized." Cellular automa­
ton evolution modifies the probabilities for states in an 
ensemble, thereby generating "organization." Figure 21 
shows the probabilities for the 1024 possible configura­
tions of a finite cellular automaton with N = 10 obtained 
after evolution for ten time steps according to rule 126 
from an initial equiprobable ensemble. Figure 22 shows 
the evolution of these probabilities over ten time steps for 
several complex cellular automata. At each time step, 
dots are placed in positions corresponding to configura­
tions occurring with nonzero probabilities. At 7" =0, all 
configurations are taken to be equally probable. Cellular 
automaton evolution modifies the probabilities for dif­
ferent configurations, reducing the probabilities for some 
to zero, and leading to "gaps" in Fig. 22. In the initial 
ensemble, all configurations were assigned equal a priori 
probabilities. After evolution (or "processing") for a few 
time steps, an equilibrium ensemble is attained in which 
different configurations carry different probabilities, ac­
cording to a definite distribution. Properties of the more 
probable configurations dominate statistical averages over 
the ensemble, giving rise to the distinctive average local 
features of equilibrium configurations described in Sec. 
III. 

In the limit N _ 00, a cellular automaton configuration 
may be specified by real number in the interval a to 1 
whose binary decomposition consists of a sequence of 
digits corresponding to the values of the cellular automa-
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FIG. 21. Probabilities for each of the 1024 possible configura­
tions in a finite (circular) cellular automaton with length N = 10 
obtained by evolution according to rule 126 for ten time steps 
from an initial ensemble containing each possible configuration 
with equal probability. On the horizontal axis, each configura­
tion S is labeled by a ten-digit binary integer (marked in decimal 
form) whose digits give the values of the corresponding sites. 
The null configuration (with value zero at all sites) is labeled by 
the integer 0, and occurs with the largest probability ~O. 13. 
The inequality of the probabilities for initially equiprobable con­
figurations is a reflection for self-organization. 

ton sites. Then the equilibrium ensemble of cellular au­
tomaton configurations analogous to those of Fig. 22 cor­
responds to a set of points on the real line. The unequal 
probabilities for appearance of 0 and 1 digits, together 
with higher-order correlations, implies that the points 
form a Cantor set (Farmer, 1982a, 1982b). The fractal 
dimensionality of the Cantor set is given by the negative 
of the entropy discussed below, associated with the en­
semble of cellular automaton configurations (and hence 
real-number binary digit sequences) (Farmer, 1982a, 
1982b). For rule 126 the fractal dimension of the Cantor 
set is then 0.5. 

An important feature of the elementary cellular auto­
mata considered here and in Sec. III is their "local ir­
reversibility." Cellular automaton rules may transform 
several different initial configurations into the same final 
configuration. A particular configuration thus has unique 
descendants, but does not necessarily have unique ances­
tors (predecessors). Hence the trajectories traced out by 
the time evolution of several cellular automaton configu­
rations may coalesce, but may never split. A trivial ex­
ample is provided by cellular automaton rule 0, under 
which all possible initial configurations evolve after one 
time step to the unique null configuration. In a reversible 
system, each state has a unique descendant and a unique 
ancestor, so that trajectories representing time evolution 
of different states may never intersect or meet. Thus in a 
reversible system, the total number of possible configura-
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tions must remain constant with time (Liouville'S 
theorem). However, in an irreversible system, the number 
of possible configurations may decrease with time. This 
effect is responsible for the "thinning" phenomenon visi­
ble in Fig. 22. The trajectories corresponding to the evo­
lution of cellular automaton configurations are found to 
become concentrated in limited regions, and do not 
asymptotically fill the available volume densely and uni­
formly. This behavior makes self-organization possible, 
by allowing some configurations to occur with larger 
probabilities than others even in the large-time equilibri­
um limit. 

One consequence of local irreversibility evident from 
Fig. 22 is that some cellular automaton configurations 
may appear as initial conditions but may never be reached 
as descendants of other configurations through cellular 
automaton time evolution. 1O Such configurations carry 
zero weight in the ensemble obtained by cellular automa­
ton evolution. In the trivial case of cellular automaton 
rule 0, only the null state with all sites zero may be 
reached by time evolution; all other configurations are un­
reachable. Rule 4 generates only those configurations in 
which no two adjacent sites have the same value. The 
fraction of the 2N possible configurations which satisfy 
this criterion tends to zero as N tends to infinity, so that 
in this limit, a vanishingly small fraction of the configu­
rations are reached. Cellular automaton rule 204 is an 
identity transformation, and is unique among cellular au-

. tomaton rules in allowing all configurations to be reached. 
(The rule is trivially reversible.) Assuming periodic boun­
dary conditions, one finds that with N odd, the complex 
additive rule 90 generates only configurations in which an 
even number of sites have value one, and thus allows ex­
actly half of the 2N possible configurations to be reached. 
For even N, ~ of the possible configurations may be 
reached. A finite fraction of all the configurations are 
thus reached in the limit N -+ 00. For the complex nonad­
ditive rule 126, inspection of Fig. 8 shows that only con­
figurations in which nonzero sites appear in pairs may be 
reached. Figure 23 shows the fraction of unreachable 
configuration for this cellular automaton rule as a func­
tion of N. The fraction tends steadily to one as N -+ 00. A 
complete characterization of the unreachable configura­
tions for this case is given in Martin et al. (1983); these 
configurations are enumerated there, and their fraction is 
shown to behave as 1-AN for large N, where A~O. 88 is 
determined as the root of a cubic equation. Similar 
behavior is found for other nonadditive rules. 

Irreversible behavior in cellular automata may be 
analyzed by considering the behavior of their "entropy" S 
or "information content" -So Entropy is defined as usu­
al as the logarithm (here taken to base two) of the average 

10 The existence of unreachable or "garden-of-Eden" configu­
rations in cellular automata is discussed in Moore (1962) and 
Aggarwal (1973), where criteria (equivalent to irreversibility) for 
their occurrence are given. 
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RULE B111111B (1Z6) 

FIG. 22. Time evolution of the probabilities for each of the 1024 possible configurations of several length 10 cellular automata start­
ing from an initial ensemble containing all 1024 configurations with equal probabilities. The configurations are specified by binary 
integers whose digits form the sequence of values at the sites of the cellular automaton. The history of a particular configuration is 
given on successive lines in a vertical column: a dot appears at a particular time step if the configuration occurs with nonzero proba­
bility at that time step. In the initial ensemble, all configurations occur with equal nonzero probabilities, and dots appear in all posi­
tions. Cellular automaton evolution modifies the probabilities for the configurations, making some occur with zero probability, yield­
ing gaps in which no dots appear. The probabilities obtained by evolution for ten time steps according to cellular automaton rule 126 
were given in Fig. 21: dots appear in the tenth line of the rule 126 part of this figure at the positions corresponding to configurations 

with nonzero probabilities. 
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FIG. 23. Fraction of the 2N possible configurations of a length 
N cellular automaton (with periodic boundary conditions) not 
reached by evolution from an arbitrary initial configuration ac­
cording to cellular automaton rule 126. The existence of un­
reachable configurations is a consequence of the irreversibility 
of cellular automaton evolution. The fraction of such configu­
rations is seen to increase steadily towards one as N increases. 

number of possible states of a system, or 

S = Vi IOg2Pi (4.1) 

where Pi is the probability for state i. The entropy may 
equivalently be considered as the average number of 
binary bits necessary to specify one state in an ensemble 
of possible states. The total entropy of a system is the 
sum of the entropies of statistically independent subsys­
tems. Entropy is typically maximized when a system is 
completely disorganized, and the maximum number of 
subsystems act independently. The entropy of a cellular 
automaton takes on its maximal value of one bit per site 

0.8 :~ 0.6 
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FIG. 24. Time evolution of average entropy per site for an en­
semble of finite cellular automata with N = 10 evolving accord­
ing to rule 126 from an initial equiprobable ensemble. The en­
tropy gives the logarithm of the average number of possible con­
figurations. Its decrease with time is a reflection of the local ir­
reversibility of the cellular automaton. 
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for an equiprobable ensemble. For reversible systems, 
time evolution almost always leads to an increase in en-

. tropy. However, for irreversible systems, such as cellular 
automata, the entropy may decrease with time. Figure 24 
shows the time dependence of the entropy for a finite cel­
lular automaton with N = 10, evolving according to rule 
126, starting from an initial equiprobable ensemble. The 
entropy is seen to decrease with time, eventually reaching 
a constant equilibrium value. The decrease is a direct sig­
nal of irreversibility. 

The entropy for a finite cellular automaton given in 
Fig. 24 is obtained directly from Eq. (4.1) by evaluating 
the probabilities for each of the finite set of 2N possible 
configurations. For infinite cellular automata, enumera­
tion of all configurations is no longer possible. However, 
so long as values of sufficiently separated sites are statisti­
cally independent, the average entropy per site may 
nevertheless be estimated by a limiting procedure. Define 
a "block entropy" [or "Renyi entropy" (Renyi, 1970; 
Fanner, 1982a, 1982b)] 

Sb=(llb)vfb)logp}b) , 

where p}b) denotes the probability for a sequence i of b 
values in an infinite cellular automaton configuration. 
The limit Sb-+«J gives the average total entropy per site. 
This limit is approached rapidly for almost all cellular au­
tomaton configurations, reflecting the exponential de­
crease of correlations with distance discussed in Sec. III. 
[Similar results are obtained in estimating the entropy of 
printed English from single letter, digram, trigram and so 
on frequencies (Shannon, 1951). Typical results (for ex­
ample, for the text of this paper) are S 1 ~4. 70, S 2 ~4.15, 
S3~3.57, and S«J -2.3.] 

Irreversibility is not a necessary feature of cellular auto­
mata. In the case of the elementary cellular automata 
considered here, the irreversibility results from the as­
sumption that a configuration Sn at a particular time step 
n depends only on its immediate predecessor so that its 
evolution may be represented schematically by 
Sn =F[Sn _ d. Except in the trivial case of the identity 
transfonnation (rule 204), F is not invertible. The cellular 
automata are discrete analogs of systems governed by par­
tial differential equations of first order in time (such as 
the diffusion equation), and exhibit the same local irrever­
sibility. One may construct reversible one-dimensional 
cellular automata (Fredkin, 1982; Margolus, 1982)1\ byal­
lowing a particular configuration to depend on the previ­
ous two configurations, in analogy with reversible 
second-order differential equations such as the wave equa­
tion. The evolution of these cellular automata may be 
represented schematically by Sn =F[Sn _I ]eSn -2, The 

II Reversible cellular automata may be constructed in two (or 
more) dimensions by allowing arbitrary evolution along a line, 
but generating a sequence of copies ("history") in the orthogonal 
direction of the configurations on the line at each time step 
(Toffoli, 1977a, 1980). 
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invertibility of modulo-two addition allows S,. -2 to be ob­
tained uniquely from S,. and S,. _ h so that all pairs of 
successive configurations have unique descendants and 
unique ancestors. For infinite reversible cellular automa­
ta, the entropy (4.1) (evaluated for the appropriate succes­
sive pairs of configurations) almost always increases with 
time. Finite reversible cellular automata may exhibit glo­
bally irreversible behavior when dissipative boundary con­
ditions are imposed. Such boundary conditions are ob­
tained if sites beyond the boundary take on random values 
at each time step. If all sites beyond the boundary have a 
fixed or predictable value as a function of time, the sys­
tem remains effectively reversible. With simple initial 
configurations, reversible cellular automata generate self­
similar patterns analogous to those found for irreversible 
ones. 12 A striking difference is that reversible rules yield 
diamond-shaped structures symmetrical in time, rather 
than the asymmetrical triangle structures found with ir­
reversible rules. 

Since a finite cellular automaton has a total of only 2N 
possible configurations, the sequence of configurations 
reached by evolution from any initial configuration must 
become periodic after at most 2N time steps (the "Poin­
care recurrence time"). After an initial transient, the cel­
lular automaton must enter a cycle in which a set of con­
figurations is generated repeatedly, as illustrated in Fig. 

8 * ** ** ** 
1 * ****** *** **** 
2 ** ** ** ** 
3 ****** * ******* 
4 ** ** ** ** 
5 * ****** *** **** 
6 ** ** ** ** 
1 ****** * ******* 
8 ** ** ** ** 
9 * ****** *** **** 
111' ** ** ** ** 
11 ****** * ******* 
12 ** ** ** ** 
13 * ****** *** **** 
14 ** ** ** ** 
15 ****** * ******* 
16 ** ** ** ** 
11 * ****** *** **** 
18 ** ** ** ** 
19 ****** * ******* 
28 ** ** ** ** 
21 * ****** *** **** 
22 ** ** ** ** 
23 ****** * ******* 
24 ** ** ** ** 
25 * ****** *** **** 
26 ** ** ** ** 
21 ****** * ******* 
28 ** ** ** ** 
29 * ****** *** **** 
38 ** ** ** ** 

25. Figure 8 suggests that simple cellular automata yield 
short cycles containing only a few configurations, while 
complex cellular automata may yield much longer cycles. 
Simple rules such as 0 or 72 evolve after a fixed small 
number of time steps from any configuration to the sta­
tionary null configuration, corresponding to a trivial 
length-one cycle. Other simple cellular automaton rules, 
such as 36, 76, or 104 evolve after ~N time steps to non­
trivial stationary configurations (with cycle length one). 
Rules such as 94 or 108 yield (after a transient of ~ N 
steps) a state consisting of a set of small independent re­
gions, each of which independently follows a short cycle 
(usually of length one or two and at most of length 2b, 

where b is the number of sites in the region) . In general, 
simple cellular automata evolve to cycles whose length 
remains constant as N increases. On the other hand, com­
plex cellular automata may yield cycles whose length in­
creases without bound as N increases. Figure 26 shows 
the distribution in the number of time steps before evolu­
tion from each possible initial configuration according to 
the complex rule 126 leads to repetition of a configura­
tion. Only a small fraction of the 2N possible configura­
tions is seen to be reached in evolution from a particular 
initial configuration. For example, in the case N = 8, a 
maximum of eight distinct configurations (out of 256) are 
generated by evolution from any specific initial state. 

** * ** *** * ** * ** * 
********** ******** ******* 

*** * ** ** 
** ** *** **** 

***** *** ** ** 
**** ******* 

** ** ** ** 
******** *** **** 

*** * ** ** 
** ** ******* 

***** *** ** ** 
**** *** **** 

** ** ** ** 
******** ******* 

*** * ** ** 
** ** *** **** 

***** *** ** ** 
**** ******* 

** ** ** ** 
******** *** **** 

*** * ** ** 
** ** ******* 

***** *** ** ** 
**** *** **** 

** ** ** ** 
******** ******* 

*** * ** ** 
** ** *** **** 

***** *** ** ** 
**** ******* 

** ** ** ** 
FIG. 25. Evolution of typical initial configurations in a finite ceIlular automaton with N = 8 (and periodic boundary conditions) ac­
cording to rule 126. Evolution from a particular initial state could generate up to 28=256 distinct configurations before entering a 
cycle and returning to a configuration already visited. Much shorter cycles, however, are seen to occur in practice. 

1Z For example, evolution from a pair of successive configurations containing zero and one nonzero sites according to the reversible 
analog of rule 150 yields a self-similar pattern with fractal dimension logz[ 4/(V'i7 - 3)]<::::1. 84. 
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FIG. 26. Distribution in the number of time steps required for finite cellular automata of length N (with periodic boundary condi­
tions) evolving according to rule 126 to reach a particular configuration for the second time, signaling the presence of a cycle. The 
cycle times found are much smaller than the value 2N obtained if evolution from a particular initial configuration eventually visited 
all 2N possible configurations. The results for N =B and N = 10 include all 256 and 1024 possible initial configurations; those for 
N =32 and N =64 are obtained by uniform Monte Carlo sampling from the space of possible initial configurations. In all cases, the 
number of configurations visited in transients before entering a cycle is very much smaller than the number of configurations in the 
cycle. 

After a transient of at most two time steps, the cellular 
automaton enters a cycle, which repeats after at most six 
further time steps. Apart from the trivial one-cycle corre­
sponding to the null configuration, six distinct cycles 
(containing nonintersecting sets of configurations) occur. 
Four have length six, and two have length two. A total of 
29 distinct "final" configurations appear in these cycles. 
The number of configurations reached by evolution from 
a particular initial state increases with N as shown in Fig. 
26. For N = 10, the maximum is 38 states, while for 
N =32, it is at least 1547. Similar behavior is found for 
most other complex nonadditive rules. 

Analytical results for transient and cycle lengths may 
be given for finite cellular automata (with periodic boun­
dary conditions) evolving according to the additive rules 
90 and 150 (Martin et aI., 1983). A complete and general 
derivation may be obtained using algebraic methods and 
is given in Martin et al. (1983). The additive superposi­
tion principle implies that the evolution of any initial con­
figuration is a superposition of evolution from single 

. nonzero sites (in each of the N cyclically equivalent possi­
ble positions). The period of any cycle must therefore 
divide the period nN obtained by evolution from a single 
nonzero site. Similarly, the length of any transient must 
divide the length Y N obtained with a single nonzero ini­
tial site. It is found that nN is identical for rules 90 and 
150, but Y N in general differs. The first few values of 
nN for rules 90 and 150 (for N =3 through N =30) are 1, 

Rev. Mod. Phvs .. Vol. 55. No.3. Julv 1963 

1, 3,2, 7, 1, 7, 6, 31,4,63, 14, 15, 1, 15, 14,511, 12,63, 
62,2047, 8, 1023, 126, 511,28, 16383, and 30. Consider 
rule 90; derivations for rule 150 are similar. Whenever N 
is of the form 2a, the cellular automaton ultimately 
evolves from any initial configuration to the null configu­
ration, so that nN = 1 in this case. When N is odd, it is 
found that the first configuration in the cycle always con­
sists of two nonzero sites, separated by a single zero site. 
The nonzero sites may be taken at positions ± 1 modulo 
N. Equation (3.2) implies that configurations obtained by 
evolution for 2i time steps again contain exactly two 
nonzero sites, at positions ±2i modulo N. A cycle occurs 
when 2i= ± 1 mod N. nN then divides n; given by 
2sordN(2) _ 1 where sordN(k) is defined as the minimum j 
for which 2i =±lmodN, and sordN(k)=ordN(k)/2 or 
sordN(k)=ordN(k). The multiplicative order function 
ord N (k) (e.g., MacWilliams and Sloane, 1977) is defined 
as the minimum j for which 2i = 1 mod N. It is found in 
fact that nN = n; for most N; the first exception occurs 
for N=37, in which case n37=n;7/3. For N=ka_l, 
ordN(k)=a, so that when N=2a_l, n; = N. Similar­
ly, when N =ka+ 1, k a= -1 mod N so that k2a 
=+lmodN and ordN(k)=2a, yielding n; =N-2 

for N = 2a + 1. In general, if N = P ~ Ip ~2 ••• , where the 
Pi are primes not equal to k, ordN(k) 
= lcm[ord al (k), ord a 2 , ••• J. ordN(k) divides the 

PI P2 

Euler totient function <p(N), defined as the number of in-
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tegers less than N which are relatively prime to N (e.g., 
Apostol, 1976; Hardy and Wright, 1979, Sec. 5.5). [lP(N) 
is even for all N> 1.] lP(N) satisfies the Euler-Fermat re­
lation ktp(Nl =lmodN. It is clear that 1T(n)~lP(n) 
~ n -1, where 1T(n) denotes the number of primes less 
than n, and the upper bound is saturated when n is prime. 
If ordN(k) is even, then ordN(k) ~ lP(N), while for 
ordN(k) odd, ordN(k) ~ lP(N)/2. Thus nN ~ 2(N-I l/2 

- 1, where the bound is saturated for some prime N. 
Such a nN is the maximum possible cycle length for con­
figurations with reflection symmetry, but is approximate­
ly the square root of the maximum possible length 2N - 1 
for an arbitrary system with N binary sites.13 When N is 
even, n N =2nN/ 2. Notice that nN is an irregular func­
tion of N: its value depends not only on the magnitude of 
N, but also on its number theoretical properties. 

When nN is prime, all possible cycles must have a 
period of one or exactly nN' When nN is composite, any 
of its divisors may occur as a cycle period. Thus, for ex­
ample, with N = 10, nN = 6, and in evolution from the 
210 - 1 possible non-null initial configurations, forty dis­
tinct cycles of length 6 appear, and five of length 3. In 
general it appears that for large N, an overwhelming frac­
tion of cycles have the maximal length nN' 

As mentioned above, for the additive rules 90 and 150, 
the length of the transients before a cycle is entered in 
evolution from an arbitrary initial configuration must 
divide Y' N, the length of transient with a single nonzero 
initial site. For rule 90, Y' N = 1 for N odd, and 
Y' N =D2(N)!2 otherwise, where D 2(n) is the largest 2i 
which divides n. For rule 150, Y' N =0 if N is not a multi­
ple of three, Y' N = 1 if N is odd, and Y' N =D2(N) other­
wise. Since, as discussed above, evolution from all 2N 
possible initial configurations according to rule 90 visits 
2N -I configurations for odd N, the result Y' N = 1 implies 
that in this case, exactly half of the 2N possible configura­
tions appear on cycles. 

Configurations in cellular automata may be divided 
into essentially three classes according to the cir­
cumstances under which they may be generated. One class 
discussed above consists of configurations which can ap­
pear only as initial states, but can never be generated in 
the course of cellular automaton evolution. A second class 
contains configurations which cannot arise except within 
the first, say T, time steps. For T = 2, such configurations 
have "parents" but no "grandparents." The third class of 
configurations is those which appear in cycles, and may 
be visited repeatedly. Such configurations may be generat­
ed at any time step (for example, by choosing an initial 
configuration at the appropriate point in the cycle, and 
then allowing the necessary number of cycle steps to oc­
cur). The second class of configurations appears as tran­
sients leading to cycles. The cycles may be considered as 
attractors eventually attained in evolution from any initial 

13 The result is therefore to be contrasted with the behavior of 
linear feedback shift registers, analogous to cellular automata 
except for end effects, in which cycles (de Bruijn sequences) of 
period 2N -1 may occur (e.g., Golomb, 1967; Beriekamp, 1968). 
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configuration. The 2N possible configurations of a finite 
cellular automaton may be represented as nodes in a 
graph, joined by arcs representing transitions correspond­
ing to cellular automaton evolution. Cycles in the graph 
correspond to cycles in cellular automaton evolution. As 
shown in Martin et al. (1983), the transient configura­
tions for the additive rules 90 and 150 appear on balanced 
quaternary trees, rooted on the cycles. The leaves of the 
trees correspond to unreachable configurations. The 
height of the trees is given by Y' N' The balanced structure 
of the trees implies that the number of configurations 
which may appear after T time steps decreases as 4-1'; 
4 - T N configurations appear on cycles and may therefore 
be generated at arbitrarily large times. 

The algebraic techniques of Martin et al. (1983) apply 
only to additive rules. For nonadditive cellular automaton 
rules, the periods of arbitrary cycles do not necessarily 
divide the periods nN of cycles generated by evolution 
from configurations with one nonzero site. Empirical in­
vestigations nevertheless reveal many regularities. 

Cyclic behavior is inevitable for finite cellular automata 
which allow only a finite number of possible states. In­
finite cellular automata exhibit finite cycles only under 
exceptional circumstances. For a wide class of initial 
states, simple cellular automaton rules can yield nontrivial 
cyclic behavior. Cycles occur in complex cellular auto­
mata only with exceptional initial conditions. Any initial 
configuration with a finite number of nonzero sites either 
evolves ultimately to the null state, or yields a pattern 
whose size increases progressively with time. Most infin­
ite initial configurations do not lead to cyclic behavior. 
However, if the values of the initial sites form an infinite 
periodic sequence (c.f. Miller, 1970, 1980), with period k, 
then the evolution of the infinite cellular automaton will 
be identical to that of a finite cellular automaton with 
k = N, and cycles with length «2k will be found. 

The transformation of a finite cellular automaton con­
figuration according to cellular automaton rules defines a 
mapping in the set of 2N binary integers representing the 
cellular automaton configurations. An example of such a 
mapping was given in Fig. 19. Repeated applications of 
the mapping yield successive time steps in the evolution 
of the cellular automaton. One may compare the results 
with those obtained for a system which evolves by itera­
tion of a random mapping among the 2N integers (cf. 
Kauffman, 1969). Random mappings of K elements are 
obtained by choosing one of the K possible images in­
dependently for each integer and with equal probabilities. 
The mapping is permitted to take an element to itself. In 
this way, all KK possible mappings are generated with 
equal probability. The probability of a particular 
element's having no preimage (predecessor) under a 
random mapping between K elements is 
(K_l)K/KK=(1-l/K)K. In the limit K~oo this im­
plies that a fraction l/e~0. 37 of the possible states are 
not reached in evolution by iteration of a random map­
ping. For complex nonadditive cellular automata, it ap­
pears that as N ~ 00, almost all configurations become 
unreachable, indicating that cellular automaton evolution 
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is "more irreversible" than iteration of a random mapping 
would imply. A system evolving according to a random 
mapping exhibits cycles analogous to those found in actu­
al cellular automata. The probability of a length r cycle's 
occurring by iteration of a mapping between K elements is 
found to be 

K (K -1)! 

i~r (K _i}!Ki 

(Harris, 1960; Knuth, 1981, Sec. 3.1, Ex. 6, 11-16; Levy, 
1982). Cycles of the maximum length K occur with finite 
probability. In the large K limit, the average cycle length 
becomes ~v 1TK /8~0.63vK, while the standard devia­
tion of the cycle length distribution is 
~V(2/3-1T /8)K ~0.52vK. The length of transients 
follows exactly the same distribution. The number of dis­
tinct cycles - V 1T /2 10gK. If we take K = 256 for com­
parison with an N = 8 cellular automaton, this implies an 
average cycle length ~ 10, an average transient length 
~ 10, ~94 unreachable configurations, and ~ 7 distinct 
cycles. Cellular automaton rule 126 yields in this case an 
average cycle length ~3.2, an average transient length 
~2.5, 190 unreachable configurations, and 7 distinct cy­
cles. Any agreement with results for random mappings 
appears to be largely fortuitous: even for large N cellular 
automata do not behave like random mappings. 

This section has thus far considered cellular automata 
which evolve according to definite deterministic local 
rules. However, as discussed in Sec. III, one may intro­
duce probabilistic elements or noise into cellular automata 
rules-for example, by reversing the value of a site at 
each time step with probability K. Section III showed that 
the local properties of cellular automata change continu­
ously as K is increased from zero. Global properties may, 

0.5 

o 200 400 

K ~0 . 5 

K ~0 . 2 

K ~O . I 

T 

600 800 1000 

FIG. 27. Fraction of configurations visited after 1" time steps in 
a finite cellular automaton (with N =7) evolving from a single 
typical initial state according to rule 126 in the presence of noise 
which randomly reverses the values of sites at each time step 
with probability K. When K =0, the cellular automaton enters a 
cycle after visiting only six distinct configurations. When K"",O, 
the cellular automaton eventually visits all 128 possible configu­
rations. 
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however, change discontinuously when a nonzero K is in­
troduced. An example of such behavior is shown in Fig. 
27, which gives the fraction of configurations visited as a 
function of time for a cellular automaton evolving ac­
cording to rule 126 with various values of K, starting from 
a single typical initial configuration. When K =0, only six 
distinct configurations are generated before the cellular 
automaton enters a cycle. When K=FO, the cellular au­
tomaton ultimately visits every possible configuration (cf. 
Gach et aI., 1978). For K~0.5, one may approximate 
each configuration as being chosen from the 2N possible 
configurations with equal probabilities: in this case, the 
average number of configurations visited after 'T time 
steps is found to be 1 - ([ 1_2-N fN)T/2N ~ 1 _ e -1'/2N• 

Cellular automata may be viewed as simple idealiza­
tions of physical systems. They may also be interpreted as 
"computers" (von Neumann, 1966; Baer and Martinez, 
1974; Burks, 1970; Aladyev, 1974, 1976; Toffoli, 1977b) 
and analyzed using methods from the formal theory of 
computation (Minsky, 1967; Arbib, 1969; Manna, 1974; 
Hopcroft and Ullman, 1979; Beckman, 1980). With this 
interpretation, the initial configuration of a cellular au­
tomaton represents a "program" and "initial data," pro­
cessed by cellular automaton time evolution to give a con­
figuration corresponding to the "output" or "result" of 
the "computation." The cellular automaton rules 
represent the basic mechanism of the computer; different 
programs may be "run" (or different "functions evaluat­
ed") by giving different initial or "input" configurations. 
This process is analogous to the "evolution" of the se­
quence of symbols on the tape of a Turing machine (Tur­
ing, 1936). However, instead of considering a single 
"head" which modifies one square of the tape at each 
time step, the cellular automaton evolution simultaneous­
ly affects all sites at each time step. As discussed in Sec. 
Y, there exist "universal" cellular automata analogous to 
universal Turing machines, for which changes in the ini­
tial configuration alone allow any computable (or "recur­
sive") function to be evaluated. A universal Turing 
machine may simulate any other Turing machine using 
an "interpreter program" which describes the machine to 
be simulated. Each "instruction" of the simulated 
machine is simulated by running the appropriate part of 
the interpreter program on the universal machine. 
Universal cellular automata may similarly simulate any 
other cellular automata. The interpreter consists of an en­
coding of the configurations for the cellular automaton to 
be simulated on the universal automaton. A crucial point 
is that so long as the encoding defined by the interpreter 
is sufficiently simple, the statistical characteristics of the 
evolution of configurations in the universal cellular au­
tomaton will be shared by the cellular automaton being 
simulated. This fact potentially forms the basis for 
universality in the statistical properties of complicated 
cellular automata. 

The simplest encodings which allow one cellular au­
tomaton to represent or simulate others are pure substitu­
tion or "linear" ones, under which the value of a single 
site is represented by a definite sequence of site values. 
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(Such encodings are analogous to the correspondences be­
tween complex cellular automaton rules mentioned in Sec. 
III.) For example, a cellular automaton A evolving ac­
cording to rule 22 may be used to simulate another cellu­
lar automaton B evolving according to rule 146. For 
every 0 in the initial configuration of B, a sequence 00 is 
taken in the initial configuration of A , and for every 1 in 
B , 01 is taken in A. Then after 27 time steps, the config­
uration of A under this encoding is ,identical to that ob­
tained by evolution of B for 7 time steps. If cellular au­
tomaton B instead evolved according to rule 182, 01 (or 
10) in A would correspond to 0 in B, and 00 to 1. The 
simplicity of the interpreter necessary to represent rules 
146 and 182 under rule 22 is presumably responsible for 
the similarities in their statistical behavior found in Sec. 
III. Figure 28 gives a network which describes the simu­
lation capabilities of the complex elementary cellular au­
tomaton rules using length two linear encodings and with 
the simulated rule running at half the speed of the simula­
tor. Many of these complex rules may also simulate sim­
ple rules under such an encoding. Simulations possible 
with longer linear encodings appear to be described by in­
direction through the network. Not all complex cellular 
automaton rules are thus related by linear encodings of 
any length. 

As discussed in Sec. V, the elementary cellular automa­
ta considered here and in Secs. II and III are not of suffi­
cient complexity to be capable of universal computation. 
However, some of the more complicated cellular automa­
ta described in Sec. V are "universal," and may therefore 
in principle represent any other cellular automata. The 
necessary encoding must be of finite length, but may be 
very long. The shorter or simpler the encoding, the closer 
will be the statistical properties of the simulating and 
simulated cellular automata. 

V. EXTENSIONS 

The results of Secs. II-IV have for the most part been 
restricted to elementary cellular automata consisting of a 
sequence of sites in one dimension with each site taking 
on two possible values, and evolving at each time step ac­
cording to the values of its two nearest neighbors. This 

18 

126 

FIG. 28. Network describing simulation capabilities of complex 
elementary celIular automata with length two pure substitution 
or linear encodings. CelIular automata evolving according to 
the destination rule are simulated by giving an encoded initial 
configuration in a celIular automaton evolving according to the 
source rule. Representability of one celIular automaton by 
another under a simple encoding implies similar statistical prop­
erties for the two celIular automata, and forms potentialIy the 
basis for universality in statistical properties of celIular automa­
ta. 
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section gives a brief discussion of the behavior of more 
complicated cellular automata. Fuller development will be 
given in future publications. 

We consider first cellular automata in which the num­
ber of possible values k at each site is increased from two, 
but whose sites are still taken to lie on a line in one di­
mension. The evolution of each site at each time step is 
for now assumed to depend on its own value and on the 
values of its two nearest neighbors. In this case, the total 
number of possible sets of local rules is k (k 3). Imposition 
of the reflection symmetry and quiescence "legality condi­
tions" discussed in Sec. II introduces + k 2( k - 1) + 1 con­
straints, yielding k[k 2(1+k )-1]l2 "legal" sets of rules. For 
k = 2, this implies 25 = 32 legal rules, as considered in Sec. 
II. The number of possible legal rules increases rapidly 
with k. For k=3, there are 317=129140163~1.3X108 
rules, for k =4, ~3 X 1024, and for k = 10, 10549• 

As a very simple example of cellular automata with 
k > 2, consider the family of "modulo-k" rules in which 
at each time step, the value of a site is taken to be the sum 
modulo k of the values of its two neighbors on the previ­
ous time step. This is a generalization of the modulo-two 
rule (90) discussed on several occasions in Secs. II-IV. 
Figure 29 shows the evolution of initial states containing 
a single site with value one according to several modulo-k 
rules. In all cases, the pattern of nonzero sites is seen to 
tend to a self-similar fractal figure in the large time limit. 
The pattern in general depends on the value of the 
nonzero initial site, but in all cases yields an asymptotical­
ly self-similar figure. When k is prime, independent of 
the value of the initial nonzero site, a very regular pattern 
is generated, in which the density T(n) of "triangle struc­
tures" is found to satisfy a one-term recurrence relation 
yielding a fractal dimension 

Dk = logk i~/ = 1 + logk [k ~ 1 ), 

so that D3=1+10g32~1.631, D5~1.683, and so on. 
When k is a composite number, the pattern generated de­
pends on the value s of the initial nonzero site. If the 
greatest common divisor (s ,k) of k and s is greater than 
one (so that sand k share nontrivial prime factors), then 
the pattern is identical to that obtained by evolution from 
an initial site with value one according to a modulo­
k /(s,k) rule. In general, the density of triangles satisfies 
a multiple-term recurrence relation. In all cases, the frac­
tal dimension for large k behaves as D - 2 - 1 !10g2k [as­
suming (s,k) «k]. When k~oo, the values of sites .be­
come ordinary integers, all with nonzero values by virtue 
of the nonvanishing values of binomial coefficients, yield­
ing a figure of dimension two. 

All modulo-k rules obey the additive superposition 
principle discussed for the modulo two in Secs. II and III. 
The number of sites with value r after evolution for 7 

steps from an initial state containing a single site with 
value one is found [on analogy to Eq. (3.2)] to be 

( ) #[kl(r ) . [k) . N/ =2 r , where the functIon #, (7) gives the num-
ber of occurrences of the digit r in the base-k decomposi-
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FIG. 29. Patterns generated by evolution of one-dimensional 
cellular automata with k states per site according to a modulo-k 
rule, starting from an initial configuration containing a single 
nonzero site with value one. At each time step, the value of a 
site is the sum of the values of its two nearest neighbors at the 
previous time step. Configurations obtained at successive time 
steps are shown on successive lines. Sites with value zero are in­
dicated as blanks; · , +, and - represent, respectively, values 
one, two, and three, and in the lower two patterns, p represents 
any nonzero value. In the large time limit, all the patterns tend 
to a self-similar form, with definite fractal dimensions. 

tion of the integer T and generalizes the function # r (T ) 

introduced in Sec. III. 
Figure 30 shows typical examples of the behavior of 

some cellular automata with k = 3. Considerable diversity 
is evident. However, with simple initial states, self­
similar patterns are obtained at asymptotically large 
times, just as in the k = 2 case of Sec. III. (Notice that the 
length and time scales before self-similarity becomes evi­
dent are typically longer than those found for k = 2: in the 
limit k -+ 00 where each site takes on an arbitrary integer 
value, self-similarity may not be apparent at any finite 
time.) Evolution of disordered initial states also again ap­
pears to generate nontrivial structure, though several nov­
el phenomena are present. First, alternation of value-one 
and value-two sites on successive time steps can lead to 
"half-speed propagation" as in rule 

oooooooooooooo 100200 1010020 . 

Second, rules such as 

000000000000001011002010010 

lead to a set of finite regions containing only sites with 
values zero and one, separated by "impermeable mem-
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branes" of value-two sites. The evolution within each re­
gion is independent, with the membranes enforcing boun­
dary conditions, and leading to cycles after a finite num­
ber of time steps. Third, even for legal rules such as 

000000121022002210021020100 

and 

211000122121012200112021200 , 

illustrated in Fig. 30, there exist patterns which display a 
uniform shifting motion. For example, with rule 

211000122121012200112021200 

an isolated 12 shifts to the right by one site every time 
step, while an isolated 21 shifts to the left; when 21 and 
12 meet, they cross without interference. Uniform shift­
ing motion is impossible with legal rules when k = 2, since 
sequences of zero and one sites cannot define suitable 
directions (evolution of 1101 and 1011 always yield a pat­
tern spreading in both directions). 

An important feature of some cellular automata with 
more than two states per site is the possibility for the for­
mation of a membrane which "protects" sites within it 
from the effects of noise outside. In this way, there may 
exist seeds from which very regular patterns may grow, 
shielded by membranes from external noise typical in a 
disordered configuration. Examples of such behavior are 
to be found in Fig. 30. Only when two protective mem­
branes meet is the structure they enclose potentially des­
troyed. The size of the region affected by a particular 
seed may grow linearly with time. Even if seeds occur 
with very low probability, any sufficiently long disordered 
configuration will contain at least one, and the large time 
behavior of the cellular automaton will be radically af­
fected by its presence. 

In addition to increasing the number of states per site, 
the cellular automata discussed above may be generalized 
by increasing the number of sites whose values affect the 
evolution of a particular site at each time step. For exam­
ple, one may take the neighborhood of each site to contain 
the site itself, its nearest neighbors, and its next-nearest 
neighbors. With two states per site, the number of possi­
ble sets of legal local rules for such cellular automata is 
226~7X 107 (for k=3, this number increases to 
3174 ~ 1083). Figure 31 shows patterns generated by these 
cellular automata for two typical sets of local rules. With 
simple initial states, self-similar patterns are obtained at 
large times. With disordered initial states, less structure 
is apparent than in the three-site neighborhood cellular 
automata discussed above. The patterns obtained with 
such cellular automata are again qualitatively similar to 
those shown in Sec. II. 

The cellular automata discussed so far have all involved 
a line of sites in one dimension. One may also consider 
cellular automata in which the sites lie on a regular 
square or (hyper)cubic lattice in two or more space dimen: 
sions. As usual, the value of each site is determined by 
the values of a neighborhood of sites at the previous time 
step. In the simplest case, the neighborhood includes a site 
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and its nearest neighbors. However, in d > 1 dimensions 
two possible identifications of nearest neighbors can be 
made. First, sites may be considered neighbors if one of 
their coordinates differ by one unit, and all others are 
equal, so that the sites are "orthogonally" adjacent. In 
this case, a "type-I" cellular automaton neighborhood 
containing 2d + 1 sites is obtained. Second, sites may be 
considered neighbors if none of their coordinates differ by 
more than one unit, so that the sites are "orthogonally" or 
"diagonally" adjacent. This case yields a "type-II" cellu­
lar automaton neighborhood containing 3d sites. When 
d = 1, type-I and -II neighborhoods are identical and each 
contains three sites. For d =2, the type-I neighborhood 
contains five sites, while the type-II neighborhood con­
tains nine sites. 14 Cellular automaton rules may be con­
sidered legal if they satisfy the quiescence condition and 
are invariant under the rotation and reflection symmetries 
of the lattice. For d = 2, the number of possible legal 
type-I rules with k states per site is found to be 
k (k 5+k 3+2k 2-4 )/\ yielding 211 =2048 rules for k =2 and 
371~8 X 1033 for k = 3. The number of type-II rules with 
k=2 in two dimensions is found to be 259~6X 1017 (or 
271 if reflection symmetries are not imposed). 

Figure 32 shows the evolution of an initial configura­
tion containing a single nonzero site according to two­
dimensional (type-I) modulo-two rules. In case (a) the 
value of a site is taken to be the sum modulo two of the 
values of its four neighbors on the previous time step, in 
analogy with one-dimensional cellular automaton rule 90. 
In case (b), the previous value of the site itself included in 
the sum (and the complement is taken), in analogy with 
rule 150. The sequence of patterns obtained at successive 
time steps may be "stacked" to form pyramidal structures 
in three-dimensional space. These structures become 
self-similar at large times: in case (a) they exhibit a fractal 
dimension log25~2. 32, and in case (b) a dimension 
1 +log2(1+V3b2.45. The patterns found on vertical 
slices containing the original nonzero site through the py­
ramids (along one of the two lattice directions) are the 
same as those generated by the one-dimensional modulo­
two rules discussed in Secs. II and III. The patterns ob­
tained at each time step in Fig. 31 are almost always self­
similar in the large time limit. For case (a), the number 
of sites with value one generated after 7 time steps in Fig. 
31 is found to be 4#I(T ), where #1(7) gives the number of 
occurrences of the digit one in the binary decomposition 
of the integer 7, as discussed in Sec. III (cf. Butler and 
Ntafos, 1977). The type-I modulo-two rules may be gen­
eralized to d-dimensional cellular automata. In case (a) 
the patterns obtained by evolution from a single nonzero 
initial site have fractal dimension log2(2d + 1) and give 
(2d)# I(T) nonzero sites at time step 7. In case (b), the 
asymptotic fractal dimension is found to be 
log2[d(VI +4/d + 1 )] . Once again, simple initial states 
always yield self-similar structures in the large time limit. 

14 In the case d = 2, neighborhoods of types I and II are known 
as von Neumann and Moore neighborhoods, respectively. 
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A particular type-II two-dimensional cellular automa­
ton whose evolution has been studied extensively is the 
game of "Life" (Conway, 1970; Gardner, 1971, 1972; 
Wainwright, 1971-1973; Wainwright, 1974; Bucking­
ham, 1978; Berlekamp et ai., 1982, Chap. 25; R. W. 
Gosper, private communications). The local rules take a 
site to "die" (attain value zero) unless two or three of its 
neighbors are "alive" (have value one). If two neighbors 
are alive, the value of the site is left unchanged; if three 
are alive, the site always takes on the value one. Many 
configurations exhibiting particular properties have been 
found. The simplest isolated configurations invariant 
under time evolution are the "square" (or "block") con­
sisting of four adjacent live sites, and the "hexagon" (or 
"beehive") containing six live sites. "Oscillator" configu­
rations which cycle through a sequence of states are also 
known. The simplest is the "blinker" consisting of a line 
of three live sites, which cycles with a period of two time 
steps. Oscillators with periods 3, 5, and 7 are also known; 
other periods may be obtained by composition. So long as 
they are separated by four or more unfilled sites, many of 
these structures may exist without interference in the con­
figurations of a cellular automaton, and their effects are 
localized. There also exist configurations which "move" 
uniformly across the lattice, executing a cycle of a few 
internal states. The simplest example is the "glider" 
which contains five live sites and undergoes a cycle of 
length two. The number of filled sites in all the configu­
rations mentioned so far is bounded as a function of time. 
However, "glider gun" configurations have been found 
which generate infinite streams of gliders, yielding a con­
tinually increasing number of live sites. The simplest 
known glider gun configuration evolves from a configura­
tion containing 26 live cells. Monte Carlo simulation sug­
gests that a disordered state of N 2 cells usually evolves to 
a steady state within about N 2 time steps (and typically 
an order of magnitude quicker); very few of the 2N2 possi­
ble configurations are visited. Complicated structures 
such as glider guns are very rarely produced. Rough em­
pirical investigation suggests that the density of structures 
containing L live sites generated from a disordered initial 
state (cf. Buckingham, 1981) decreases like e -L-/L, 
where L _ is the size of the minimal distinct configura­
tion which evolves to the required structure in one time 
step. Just as for the one-dimensional cellular automata 
discussed in Sec. IV, the irreversibility of "Life" leads to 
configurations which cannot be reached by evolution 
from any other configurations, and can appear only as in­
itial states. However, the simplest known "unreachable" 
configuration contains around 300 sites (Wainwright, 
1971-1973; Hardouin-Duparc, 1974; Berlekamp et ai., 
1982, Chap. 25). 

The game of "Life" is an example of a special class of 
"totalistic" cellular automata, in which the value of a site 
depends only on the sum of the values of its neighbors at 
the previous time step, and not on their individual values. 
Such cellular automata may arise as models of systems in­
volving additive local quantities, such as chemical con­
centrations. In one dimension with k = 2 (and three sites 
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in each neighborhood) all cellular automaton rules are to­
talistic. In general, the number of totalistic (legal) sets of 
rules for cellular automata with v neighbors for each site 
is k (k-I )(vk+\). In one dimension with k=3, ~5 X 106 of 
the ~ 108 possible rules are therefore totalistic. Only 243 
of the totalistic rules are also periperal in the sense de­
fined in Sec. II. With k =2 in two dimensions, 29 of the 
211 possible rules in a type-I neighborhood are totalistic 
(and 32 are also peripheral), and 217 of the 259 in a type-II 
neighborhood. 

A potentially important feature of cellular automata is 
the capability for "self-reproduction" through which the 
evolution of a configuration yields several separated iden­
tical copies of the configuration. Figure 33 illustrates a 
very simple form of self-reproduction with the elementary 
one-dimensional modulo-two rule (see Waksman, 1969; 
Amoroso and Cooper, 1971; Fredkin, 1981). With a sin­
gle nonzero site in the initial state, a configuration con­
taining exactly two nonzero sites is obtained after 2i time 
stepsl5 as indicated by Eq. (3 .2). The additive superposi­
tion property of ,the modulo-two rule implies that results 
for more complicated initial states are obtained by super­
position of those for single-site initial states. Thus after 
1" = 2i time steps, for sufficiently large j, the cellular au­
tomaton generates two exact copies of any initial sequence 
of site values. After a further 2i - 1 time steps, four copies 
are obtained. However, after another 2i - I time steps, the 
innermost pair of these copies meet again, and annihilate, 
leaving only two copies when 1" = 2i + I. Purely geometri­
cal "overcrowding" thus prevents exponential multiplica­
tion of copies by self-reproduction in this case. An exact­
ly analogous phenomenon occurs with the two­
dimensional modulo-two rule illustrated in Fig. 32, and 
its higher-dimensional analogs. In general, the number of 
sites in a d-dimensional cellular automaton configuration 
grows with time at most as fast as (21" )d, which is asymp­
totically slower than the number> (2d)a1' required for an 
exponentially increasing number of copies to be generated. 
.Exponential self-reproduction can thus occur only if the 
copies generated are not precisely identical, but exhibit 
variability, and for example execute a random walk 
motion in response to external noise or contain a 
"counter" which causes later generations to "live" longer 
before reproducing. 

Section IV mentioned the view of cellular automata as 
computers. An important class of computers is those 
with the property of "computational universality," for 
which changes in input alone allow any "computable 
function" to be evaluated, without any change in internal 
construction. Universal computers can simulate the 
operation of any other computer if their input is suitably 

15 An analogous result holds for all modulo-k rules with k 

prime by virtue of the relation (7 i ) mod k = 0, 0 < i < ki valid 
for all primes k. The relation is. a special case of the general re­
sult (Knuth, 1973, Sec. 1.2.6, Ex. to) 

[j 1 [lj Ik] 1 [j mod k 1 
i = lilk] imodk modk . 
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encoded. Many Turing machines have been shown to be 
computationally universal. The simplest has seven inter­
nal states, and allows four possible "symbols" in each 
square of its tape. One method for demonstrating compu­
tational universality of cellular automata shows 
correspondence with a universal Turing machine. The 
head of the Turing machine is typically represented by a 
phononlike structure which propagates along the cellular 
automaton. It may be shown (Smith, 1971) that an 
eighteen-state one-dimensional cellular automaton with a 
three-site neighborhood can simulate the seven-state 
four-symbol Turing machine in this way, and is therefore 
computationally universal. Simpler computationally 
universal cellular automata must be found by other 
methods. The most straightforward method is to show 
correspondence with a standard digital computer or elec­
tronic circuit by identifying cellular automaton structures 
which act like "wires," carrying signals without dissipa­
tion and crossing without interference, and structures 
representing NAND gates at intersections between wires. 
"Memories" which maintain the same state for all time 
are also required. In the Life-game cellular automaton 
discussed above, streams of gliders generated by glider 
guns may be used as wires, with bits in the signal 
represented by the presence or absence of gliders. At the 
points where "glider streams" meet, other structures 
determine whether the corresponding wires cross or in­
teract through a "NAND gate." The Life-game cellular au­
tomaton is thus computationally universal. "Circuits" 
such as binary adders (Buckingham, 1978) may be con­
structed from Life configurations. It appears that such 
circuits run at a speed slower than the digital computers 
to which they correspond only by a constant multiplica­
tive factor. The "Life game" is a type-II two-dimensional 
cellular automaton with two states per site. A computa­
tionally universal type-I two-dimensional cellular automa­
ton has been constructed with three states per site (Banks, 
1971); only two states are required if the initial configura­
tion is permitted to contain an infinite "background" of 
nonzero sites (Toffoli, 1977a). In one dirpension, with a 
neighborhood of three sites, there are some preliminary 
indications that a universal cellular automaton may be 
constructed with five states per site. The details and im­
plications of this cellular automaton will be described in a 
future publication. 

VI. DISCUSSION 

This paper represents a first step in the investigation of 
cellular automata as mathematical models for self­
organizing statistical systems. The bulk of the paper con­
sisted in a detailed analysis of elementary cellular automa­
ta involving a sequence of sites on a line, with a binary 
variable at each site evolving in discrete time steps ac­
cording to the values of its nearest neighbors. Despite the 
simplicity of their construction, these systems were found 
to exhibit very complicated behavior. 

The 32 possible (legal) elementary cellular automata 
were found to fall into two broad classes. The first class 
consisted of simple cellular automata whose time evolu-
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tion led eventually to simple, usually homogeneous, final 
states. The second class contained complex cellular auto­
mata capable of generating quite complicated structures 
even from simple initial states. Figure 3 showed the pat­
terns of growth obtained with the very simplest initial 
state in which only one site had a nonzero value. The 
complex rules were found to yield self-similar fractal pat­
terns. For all but one of the rules, the patterns exhibited 
the same fractal dimension log23:::d.59 (the remaining 
rule gave a fractal dimension log22tp~1.69). With more 
complicated initial states, the patterns obtained after evo­
lution for many time steps remained self-similar-at least 
on scales larger than the region of nonzero initial sites. 
The generation of self-similar patterns was thus found to 
be a generic feature of complex cellular automata evolv­
ing from simple initial states. This result may provide 
some explanation for the widespread occurrence of self­
similarity in natural systems. 

Section III discussed the evolution of cellular automata 
from general initial states, in which a finite fraction of 
the infinite number of initial sites carried value one. Re­
gardless of the initial density of nonzero sites, definite 
densities were found in the large time limit. Markovian 
master equation approximations to the density develop­
ment were found inadequate because of the importance of 
"feedback" in the cellular automaton evolution. Even 
with disordered or random initial states, in which the 
values of different sites are statistically uncorrelated, the 
evolution of complex cellular automata was found to lead 
to the formation of definite structures, as suggested by 
Figs. 8 and 15. One characteristic of this self­
organization was the generation of long sequences of 
correlated sites. The spectrum of these sequences was 
found to reach an equilibrium form after only a few time 
steps, extending to arbitrarily large scales, but with an ex­
ponential damping. The exponents were again found to 
be universal for all initial states and almost all complex 
cellular automata (with the exception of two special addi­
tive cellular automata). 

Any initial cellular automaton state was found to lead 
at large times to configurations with the same statistical 
structures. However, in complex cellular automata, the 
trajectories of almost all specific nearby initial configura­
tions (differing by changes in the values at a few sites) 
were found to diverge exponentially with time in the 
phase space of possible configurations. After a few time 
steps, the mapping from initial to final configurations be­
comes apparently random (although there are quantitative 
deviations from a uniform random mapping). Cellular 
automaton rules may map several initial configurations 
into the same final configuration, and thus lead to micro­
scopically irreversible time evolution in which trajectories 
of different states may merge. In the limit of an infinite 
number of sites, a negligible fraction of all the possible 
cellular automaton configurations are reached by evolu­
tion from any of the possible initial states after a few time 
steps. Starting even from an ensemble in which each pos­
sible configuration appears with equal probability, the cel­
lular automaton evolution concentrates the probabilities 
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for particular configurations, thereby reducing entropy. 
This phenomenon allows for the possibility of self­
organization by enhancing the probabilities of organized 
configurations and suppressing disorganized configura­
tions. 

Many of the qualitative features found for elementary 
cellular automata appear to survive in more complicated 
cellular automata (considered briefly in Sec. V), although 
several novel phenomena may appear. For example, in 
one-dimensional cellular automata with three or more 
possible values at each site, protective membranes may be 
generated which shield finite regions from the effects of 
external noise, and allow very regular patterns to grow 
from small seeds. 

Cellular automata may be viewed as computers, with 
initial configurations considered as input programs and 
data processed by cellular automaton time evolution. Suf­
ficiently complicated cellular automata are known to be 
universal computers, capable of computing any comput­
able function given appropriate input. Such cellular auto­
mata may be considered as capable of the most complicat­
ed behavior conceivable and are presumably capable of 
simulating any physical system given a suitable input en­
coding and a sufficiently long running time. In addition, 
they may be used to simulate the evolution of any other 
cellular automaton. If the necessary encoding is suffi­
ciently simple, the statistical properties of the simulated 
cellular automaton should follow those of the universal 
cellular automaton. Although not capable of universal 
simulation, simpler cellular automata may often simulate 
each other. This capability may well form a basis for the 
universality found in the statistical properties of various 
cellular automata. 

Cellular automata have been developed in this paper as 
general mathematical models. One may anticipate their 
application as simple models for a wide variety of natural 
processes. Their nontrivial features are typically evident 
only when some fonD of growth inhibition is present. Ex­
amples are found in aggregation processes in which aggre­
gation at a particular point prevents further aggregation 
at the same point on the next time step. 
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