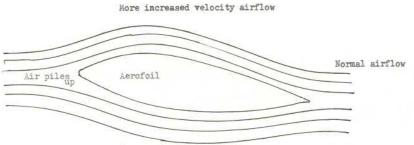

CONCISE DIRECTORY OF PHYSICS

Stephen Wolfram

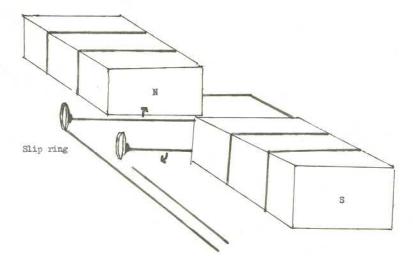
ABUNDANCE OF ELEMENTS



Graph of relative abundances of elements in the solar system, and probably in the universe. These were discovered, in the case of the lighter elements, using the Sun's spectra, and with the heavier ones, meteorites.

The 8 most common elements in the Earth's oceans, atmosphere, and uppermost 10 miles of curst.:

Oxygen	62.6 %
Silicon	21.2 %
Aluminium	6.5%
Sodium	2.64 %


AEROFOIL

Increased velocity airflow

According to hydrodynamics, the sum of energies of velocity and pressure, and the potential energy of elevation remain constant. As the energy of an air mass is the sum of its velocity and pressure, it follows that if there is an increase in velocity, the pressure falls and vice-versa. As the distance over the top of an aerofoil is greater than that under the bottom, and the two airflow reach the end of the aerofoil at the same time, it follows that the upper one has more velocity and less pressure, and the lower; one less velocity and more pressure. The differential has a lifting effect on the body and is called 'lift'. Where the air meets behind the aerofoil, there is a higher pressure, due to the two streams hitting each other. This tends to push the aerofoil forward. At the front, however, as air hits the aerofoil, the aerofoil is retated slightly. The high velocity of airflow under the wing helps to keep the wing or aerofoil up as well. ALTERNATING CURRENT

Generation:

Alternating current changes its direction of flow at a fixed rate. The most common type used is that from the mains, which is reversed 120 times a second, thus it has a frequency of 60 c.p.s.. The cheif advantage which alternating current has over direct current is that its voltage can be changed much more easily. A.C. is generated by an alternator, which, in its simplest form is a wire or coil rotating in an electric field between two opposing poles of a magnet. The current is drawn by means of two slip rings which are brushed by copper brushes from the coil.

ASTEROIDS.				
	mail Getting			
List of i	aportant asteroids:	N CLEAR		
First twee	nty discovered:			
Number	Name	Distance from Sun (mean A.	ט)	
l	Ceres	2.8		
2	Pallas	2.8		
3	Juno			
4	Vesta	2.4		
5	Astraea	2.6		
6	Hebe	2.4		
7	Iris	2.4		
8	Flora	2.2		
. 9	Metis	2.4		
10	Hygiea	3.1		
11	Parthenope	2.4		
12	Victoria	2.3 even the school go	tin to velimite	
13 13	Egeria	2.6 Page 1940 and allo	norms and meany h	
14	irene	2.6 d teldina .lettedae d		
15	Bunomia	2.6 2 agric has must a metal		
16	Psyche	2.9		
17	Thetis	2.5		
18	Melpomene	2.3		
19	Fortuna	2.4		
20	Massilia	2.4		
Close ast	eroids:			
433	Eros	1.5		
1566	lcarus	1.1		
1620	Geographos	1,2		
	Apollo	1,5		
	Hermes	1.3		

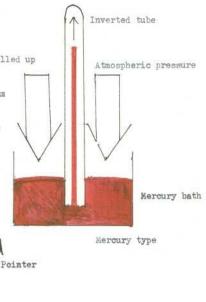
ASTRONOMICAL SIGNS AND SYNBOLS

SPHERICAL ASTRONOMY

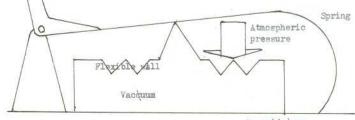
the march of the mounter of the	
a, R.A.	Right Ascension
δ, Deg.	Declination
8, A	Azimuth
h	Altitude
Z	Zenith distance
λ	Celestial longitude
P	Celestial latitude
G	Galactic longitude
g	Galactie latitude
¢	Polar distance
θ	Sidereal time
h	Hour
m	Minute
s	Second
P	Position angle
d	Distance im seconds of arc
M	Proper motion
Я	Parrallax in seconds of arc
ε	Obliquity of the ecliptic
t	Hour angle
ORBIT DETERMINATION	
k	Constant of gravitation
m	Planet's mass to Sun's mass
T	Time of perihelion passage
E	Epoch
ω	Angular distance from ascending node to periheliob
Ω	Longditude of ascending node
π	Longitude of perihelion point
i	Inglination of the ecliptic
e	Eccentricity of the orbit

ď	Conjuction
	quadrature
00	Opposition
Ω	Ascending node
V	Descending node

CONSTELLATIONS OF THE ZODIAC

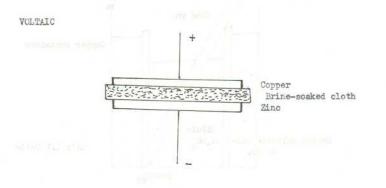

Aries
Taurus
Gemini
Cancer
Leo
Virgo
Libra
Scorpius
Sagitarius
Capricornus
Aquarius
Pisces

ATMOSPHERE.	See 1 March		
Composition:	(average at sea-level)	1 20	
	8- B4480		
Nitrogen	78.08%	1.10	
Oxygen	20.95%	12.121.12	
Argon	0.93%		
Carbon Dioxide	0.03%		
Neon	0.0018%		
Helium	0.0005%	20.0000	
Krypton	0.001%		
Xenon	0.00001%		
Plus small very	variable amounts of:		
Water wapour			
Hydrogen peroxi	de		
Hydrocarbons			
Sulphur compoun	ds		
Dust particles			

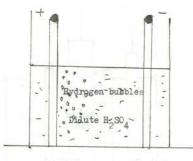

Height: KM	Teperature:	(The second number is the power of ten to be multiplied by) Pressure: mB
0.000	288.15	10.1325 2
11.019	216.65	2.2632 2
20.063	216.65	5.4774 l
32.162	228,65	8.6798 0
47.350	270.65	1.1090 0
52.429	270.65	5.8997 -1
61.591	252.65	1.8209 -1
7/9.994	180.65	1.0376 -2
90	180.65	1.6437 -3
100	210.02	3.0070 -4
110	257.00	7.3527 -5
120	349.49	2.5209 -6

BAROMETERS

In the mercury barometer, a tube isv filled up with mercury, and then inverted into a bath of mercury. This causes a vaccuum at the top of the tube, so the mercury rises according to how much atmospheric pressure there is on the bath.



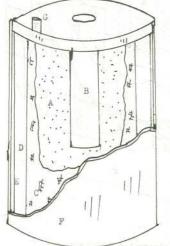
In the aneroid barometer, the force of the atmospheric pressure on the flexible wall of the vaccuum container, gauses it to move up and down. By a pointer, this is shown a a circular scale, after being mechanically amplified.



Aneroid type

BATTERIES

SIMPLE CELL

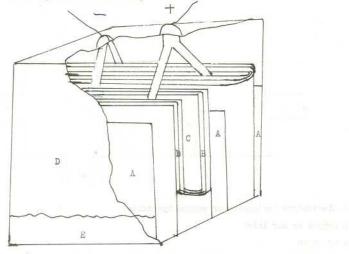


Cu plate

Zn plate

The disadvantage of this type of cell is that the Hydrogen gas does not conduct and thus, when there is a lot of electrolysis, the cell fails to work so efficiently. This is called potarization.

WIT - MA -



- sighted all des activities thill.
 - Turner / metrics

KEY:

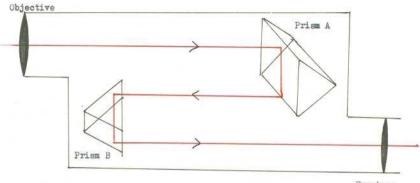
- A Manganese dioxide and powdered carbon
- B Carbon rod (positive)
- C Muslim bag
- D Paste of Ammonium chloride and a company and a solution and allow
- E Zinc (negative) Lintel control of the set of the set of a set of the set of a set of the set of t
- F Cases minth and intig of privations tunning loss at most it
- G Vent , headerback that growed that the term hard and the term and process

SILVER - CADMIUM ACCUMULATOR

KEY:

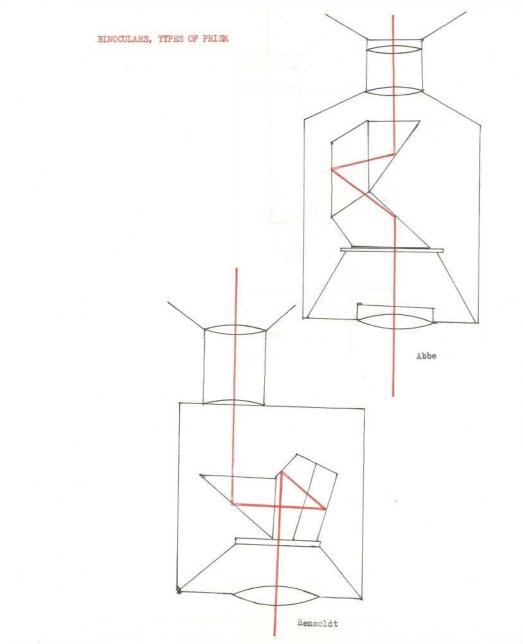
A NEgative electrodes (Cadmium)

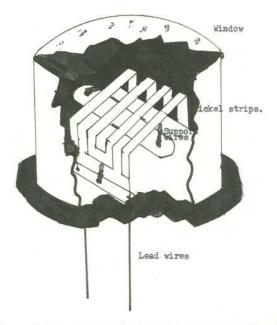
- B Separators
- C Positive electrodes (silver)
- D Plastic casing
- E Electrolyte


Other kinds of accumulator include:

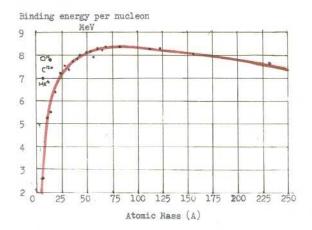
Nickel - Iron (NiFe)	Electrolyte - 20 % Potassium hydroxide
Zinc - air	Electrolyte - 20 % Potassium hydroxide
Sodium - Sulphur @	
Lithium - Chlorine @	
@ these accumulators nee	ed an operating temperature of $300 - 600$ °C

BEL.


(See article on Sound)	
Increase in decibels	Increase facter
1	1.26
2	1.58
3	2.0
4	2.51
5	3.16
6	3.98
7	5.2
8	6.3
9	7.95
IO	10

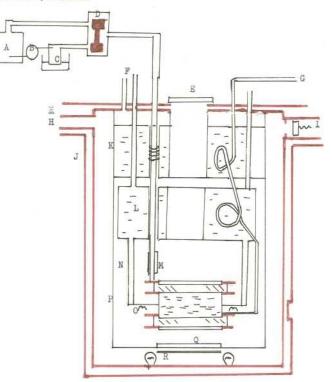

DECIBELS	
165	Saturn V launching pad at lift-off
160	Jet engines wide open
150	50 - hp siren at IOO ft.
140	mir raid siren at 20 ft.
130	Pneumatic chipper at 5 ft.
120	Shotgun blast
110	Annealing furnace at 4 ft.
100	Passing train at 500 ft.
70	Conversational speech at 3 ft.
60	Office with typewriters.
30	Light city traffic at IOO ft.
40	Average living room
30	Broadcasting studio
20	Very quiet room.

Eyepiece


Prism binoculars are ingenious because they allow the objective to have a long focal length without the binoculars having to be very long in tube length. They also produce an erect and laterally correct image. Prism A corrects the Vertical inversion from the objective, and prism B corrects the Lateral inversion.

The nickel strips resistance varies with temperature, and so do the phosphor bronze support wires. Thus, the amount of heat falling on the bolometer can be deduced.

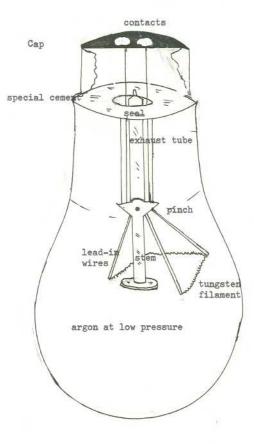
BONDING ENERGY

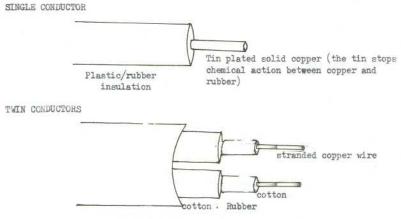

Graph of $\Delta(A,Z)c^2 / A$

It is reasonable to say that the binding energy between the parts of a nucleus is about 8 MeV.

DIATOMIC MOLECULES, .

Molecule	Distance between nuclei	Energy needed to separate atoms (dissociation energy)
AgH	1.62	2.5 ^(eV)
BaO	1.94	4.7
Br ₂	2.28	1.97
CaO	1.82	5.9
H2	0.75	4.5
Hel	1.27	4.4
HF	0.92	6.4
HgH	1.74	0.38
KCL	2.79	4.42
N2	1.09	9.76
02	1.20	5.08

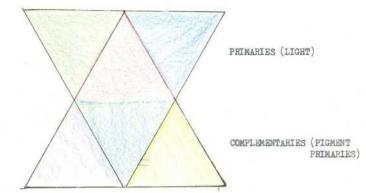

BUBBLE CHAMBER , HYDROGEN

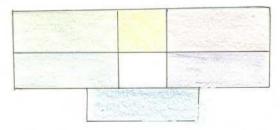


- A Expansion tank
- B Compressor
- C Recompression tank (LN₂)
- D Expansion valve
- E Camera
- F Vents
- G Chamber H₂ supply
- H Vaccuum pump
- I Vent
- J Vaccuum tank

- K Liquid N₂ jacket
- L Liquid H2 flask
- M Expansion line
- N Heat leak
- 0 Heater
- P Radiation shield at liquid N₂ temperature.
- y Shutter
- R Light


BULB, ELECTRICAL




Cotton braid

CIRCUIT DIAGRAM SYMBOLS

The light primaries work by addition, e.g. the three primaries make white, whereas the pigment primaries work by subtraction. If you have a red piece of paper, then it absorbs all light except red. Thus, it is obvious why the pigment primaries are complementaries to the light primaries.

Light mixing.

COLOUR

COLOUR CODES, ELECTRICAL COMPONENTS

RESISTORS.

0	•	•	•	•	•		•	•	•	•	•	*	•	•	•	•	•	•	•	•		•	•	•	2	į	Black
1		•	•	•		•	•	*	•	•	•		•	×		•	•	•	•	•	•		•				.Brown
2			•	•		•	•	*	•	•				•			•	•			•		•		1	6	Red
3						•	•		•	•		•	•	•	•	•	•										Orange
4		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•					Yellow
5		•	•	•	•	•	•	•	•	•			•	•	•	•	•				•	•	•	•		ġ	Green
6	•		•		•		•	•	•	•				•	•	•	•	•			•	•		,			Blue
7							•					•	•				•	•	•	•		•	5	è			.Violet
8		•		•					•	•			•	•					•							.,	.Grey
9																									0	ġ	.White

(a) The colour on the body of the resistor stands for the first figure of the ohms, the tip stands for the second digit, and a band or dot stands for the number of 0's th follow.

silver..... 20% tolerance

nothing 10% tolerance

CONDENSERS.

To	olerance	Voltage rating	
1	%	100	Brown
2	%		Red
3	%		Orange
4	%		Yellow
5	%		Green

WANDER PLUGS.

PLUGS.

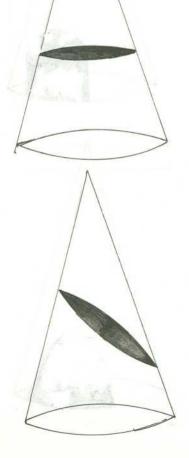
Brown....Live Yellow/Grean.....Earth Blue.....Negative

Ε

L

N

Prong configuration.


CONCEPTS ;, PHYSICAL

Concept S	ymbol	Name	Abbr.	Definition	
Length	1	metre	m	1650763.73 of (2p ₁₀ - 5d ₅)	wavelength of of Kr 86
Mass	m	kilogramme	kg	International	protytype Kg.
Time	t	second	8	tion correspo	riods of the radia- nding to the tran- n the ground states
Electric current	I	ampere	a	long, negliga uctors lm apa	long two infinitely ble thickness cond- rt needed to produ- / m force between
Thermodynamic temperature	T	kelvin	K	1/273.15 of t the triple po	he temperature of int of water.
Luminous intensity	I	candela	cd	body radiator point of plat	nsity of a black- at the freezing inum viewed_normal e is 6 X 10 [°] cd/m [°]
Amount of substand	e	mole	mol	Number of ele 0.012 kg of	mentary units in ² C.
Plane angle «, β,	0 etc.	radian	rad		ed at the center of n arc the same radius.
Solid angle	D, w	steradian		3 - Dimension	al version of rad.
Area	a, A	Square metr	me m²	$a = 1^{2}$	
Volume	V	Cubic metre	. m ³	V = 1 ³	
Velocity	V, u		m s ⁻¹	V = dl/dt	
Acceleration	a		m s ⁻²	$a = d^2 l/dt^2$	
Density	P		kg m ⁻³	$\rho = m/V$	
Mass rate of flow	ň, Á		kg s ⁻¹	dm/dt	
Volume rate of flo	w V		m ³ s ⁻¹	dV/dt	
Moment of imertia	I		kg m ²		
Angular momentum	\mathbf{L}_{ω}		kg m ² s ⁻¹	I.	
Momentum	P		kg m s ⁻¹		
Force	F	Newton	N	F = ma	
Torque	T(M)	Newton metr	re Nm	T = Fl	

Susceptance	В	Siemens	S	$B \equiv 1/X$ (one)
Admittance	Y	Siemens	S	$\gamma = 1/Z$ (one)
Total voltamperes	S	Voltamp	VA	$s^2 = p^2 q^2$
Reactive voltamper	es Q		VA r	
Luminous flux	¢	Lumen	lm	lm = cd sr
Illumination	E	Lux	lx	$lx = lm m^2$

Circle

Test areas

Ellipse

denter here

CONSTANTS

El ectronic charge	1.60210 × 10 ⁻¹⁹ couloumb	e
Electronic rest mass	9.1091 X 10 ⁻³¹ kilogram	me
Electronic radius	2.81777 X 10 ⁻¹⁵ metre	re
Proton rest mass	1.67252 × 10 ⁻²⁷ kilog r am	mp
Neutron rest mass	1.67482 X 10 ⁻²⁷ kilogram	m
Planck's constant	6.62559 X 10 ⁻³⁴ joule second	h
Velocity of light	2.997925 X 10 ⁸ metres per second	с
Avogadro's constant	6.02252 X 10 ²³ per molve	L
Loschmidt's constant	$2.68719 \times 10^{25} \text{ m}^{-3}$	N
Gas constant	8.3143 J K ⁻¹ mol ⁻¹	R
Boltzmann's constant	1.30854 × 10 ⁻²³ J K ⁻¹	k
Faraday's constant	9.64870 X 10 ⁴ C mol ⁻¹	F
Stefan – Boltzmann constant	5.6697 X 10 ⁻⁸ W M- ⁻² K ⁴	٢
Gravitational constant	6.670 X 10 ¹¹ N m ² Kg ⁻²	G
Accelearation due to gravity	9.80665 × 10 ⁰ m s ⁻²	g
Permeability of a yackuum	4π × 10 ⁻⁷ H m ⁻¹	to
Permittivity of a vaccum	8.85418 X 10 ⁻¹² F m ⁻¹	€0
		0

Abbreviation High of accension accension accension Declination accension accension Andromeda And 1 4C M Antlia Ant 10 35 S Aquarius Aqts 10 35 S Aquarius Aqts 10 35 S Aquarius Aqts 25 15 S Aquila Aqi 20 5 S Ara Ara Ara Ara Ara 17 5 S Aries Ari 3 20 N M Auriga Auriga Auriga M S Camelopardus Cae 5 40 S S C Canis Major OKi 8 5 N S C Carins Mior Oki 8 5 N S Carins Mior Oki 8 5 N S Caris Major Carins 13 <	CONSTRUCTIONS		20	757 -5-4	Deali	natio	
Andromedia And 1 4.2 N Antlia Ant 10 35 S Apusa Aps 16 75 S Aquarius Aqr 25 15 S Aquila Aql 20 5 N Ara Ara Ara 17 55 S Arisa Ara Ara 3 20 N Auriga Aur 6 40 N Bootes Boo 15 30 N Camelopardus Came 6 70 S Camelopardus Cam 6 70 N Canis Minor CMi 8 5 N Carina Car 9 60 N Cassiopeia Cas 1 60 N Cassiopeia Cer 2 10 N Cassiopeia Cer 2 10 N Casiopeia Con 11 80 S Chamaeleon Cha <th></th> <th>Abbrevia</th> <th>tion.</th> <th>Right</th> <th>Dectr</th> <th>18 010</th> <th></th>		Abbrevia	tion.	Right	Dectr	18 010	
Antlia Ant 10 35 \$ Apuss Aps 16 75 \$ Aquarius Aqr 25 15 \$ Aquila Aqi 20 5 \$ Ara Ara 17 55 \$ Ara Ara 17 55 \$ Auriga Auri 6 40 \$ Bootes Boo 15 30 \$ Caelum Cae 5 40 \$ Camelopardus Cam 6 70 \$ Cans Major CMa 7 20 \$ Canis Major CMi 8 5 \$ Capricornus Capp 21 20 \$ Carina Car 9 60 \$ <	Andromeda	And			40	N	
Apus Aps 16 75 S Aquila Aqr 25 15 S Aquila Aql 20 5 N Ara Ara Ara 17 55 S Aries Ara Ara 17 55 S Aries Ara Ara 17 55 S Ara Ara Ara 17 55 S Ara Ara Ara 17 55 S Ariss Bootes Boo 15 30 N Camelopardus Came 6 70 S Cames 16 7 20 S Canes Canor 9 60 N Canor S Canor S S Canor S Canor S Canor S S S S S S S S S S S S Canor S S Canor S Canor S Canis Minor CM S Canis	and the state of t			250.00			
Aquarius Aqr 25 15 S Aquarius Aql 20 5 N Ara Ara 17 55 S Aries Ari 3 20 N Auriga Aur 6 40 N Bootes Boo 15 30 N Bootes Boo 15 30 N Caelum Cae 5 40 S Cancer Cam 6 70 S Canse Venatici CVn 13 40 N Cans Venatici Car 9 60 S Carina Car 9 60 S Caris Caron Caro							
Aquila Aql 20 5 M: Ara Ara 17 55 S Aries Ari 3 20 N Auriga Auri 6 40 N Bootes Boo 15 30 N Caelum Cae 5 40 S Camelopardus Cam 6 70 S Cancer Cnc 9 20 N Canse Major CMa 7 20 S Canis Minor CWi 8 5 N Capricornus Cap 21 20 S Carina Cassiopeia Cas 1 60 N Centaurus Cen 13 50 S S Centaurus Cet 2 10 S S Chamaeleon Cha 11 80 S Coruna Cort 13 20 N Corona Austrina Crak 19 40 S Coron							
Ara Ara 17 55 S Aries Ari 3 20 N Auriga Aur 6 40 N Bootes Boo 15 30 N Caelum Cae 5 40 S Canes Cam 6 70 S Canes Venatici CVn 13 40 N Canes Venatici CVn 13 40 N Canis Major CMa 7 20 S Canis Minor CMi 8 5 N Capricornus Cap 21 20 S Carina Car 9 60 N Centaurus Cen 13 50 S Cepheus Cet 2 70 N Cetus Cir 15 60 S Circinus Cir 15 60 S Columba Col S S S Corona Austrina CrA 19 40 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Aries Ari 3 20 N Auriga Aur 6 40 N Bootes Boo 15 30 N Caelum Cae 5 40 S Camelopardus Cam 6 70 S Cancer Onc 9 20 N Cans Venatici CVn 13 40 N Cans Minor CMi 8 5 N Capricornus Cap 21 20 S Carins Car 9 60 S Carins Car 13 20 S Carins Cer 2 10 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>10.0</td> <td></td>		-				10.0	
Auriga Aur 6 40 N Bootes Boo 15 30 N Caelum Cae 5 40 S Camelopardus Cam 6 70 S Cancer Cnc 9 20 N Canis Major CMa 7 20 S Canis Major CMa 7 20 S Canis Minor CMi 8 5 N Capricornus Cap 21 20 S Cassiopeia Cas 1 60 N Centaurus Cer 9 60 S Cassiopeia Cas 1 60 N Cetus Cer 2 10 S Circinus Cer 2 10 S Circinus Cir 15 60 S Corona Austrina CrA 19 40 S Corvus							
Bootes Boo 15 30 N Caelum Cae 5 40 S Cancer Cnc 9 20 N Canse Venatici CVn 13 40 N Canis Major CMa 7 20 S Canis Minor CMi 8 5 N Capricornus Cap 21 20 S Caris Minor CMi 8 5 N Capricornus Cap 21 20 S Carina Car 9 60 S Cassiopeia Cas 1 60 N Cernaurus Cen 13 50 S Cepheus Cep 22 70 N Cetus Cet 2 10 S Chemaeleon Cha 11 80 S Circinus Col 6 35 S Corona Austrina							
Caelum Cae 5 40 S Camelopardus Cam 6 70 S Cancer Cnc 9 20 N Canes Venatici CVn 13 40 N Canis Major CMa 7 20 S Canis Major CMa 7 20 S Carins Minor CMi 8 5 N Capricornus Cap 21 20 S Carins Car 9 60 S Cassiopeia Cas 1 60 N Centaurus Cen 15 50 S Centaurus Cet 2 10 S Chamaeleon Cha 11 80 S Circinus Cir 15 60 S Columba Col Gol S S Corona Berenices Com 13 20 N Cor							
Camelopardus Cam 6 70 8 Cancer Cnc 9 20 N Cances Venatici CVn 13 40 N Canis Major CMa 7 20 S Canis Minor CMi 8 5 N Capricornus Cap 21 20 S Carsis Minor CMi 8 5 N Capricornus Cap 21 20 S Cassiopeia Cas 1 60 N Centaurus Cen 13 50 S Cepheus Cep 22 70 N Cetus Cetus 2 10 S Circinus Cir 15 60 S Columba Col 6 35 S Corona Austrina CrA 19 40 S Corvus Crd Crt 11 15 S		110000					
Cancer Cac 9 20 N Canes Venatici CVn 13 40 N Canis Major CMa 7 20 S Canis Minor CMi 8 5 N Capricornus Cap 21 20 S Carina Car 9 60 S Cassiopeia Cas 1 60 N Centaurus Cen 13 50 S Ceppeus Cet 2 10 S Chamaeleon Cha 11 80 S Columba Col 6 35 S Cons Austrina CrA 19 40 S Corvus Crv 12 20 S Crater Crt 11 15 S Corvus Crv 12 20 S Crater Crt 11 15 S Crux <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Canes Venatici CVn 13 40 N Canis Major CMa 7 20 S Canis Minor CMi 8 5 N Capricornus Cap 21 20 S Carnis Minor CMi 8 5 N Capricornus Cap 21 20 S Carna 9 60 S S Cassiopeia Car 9 60 S Centaurus Cen 13 50 S Ceppueus Cet 2 10 S Chamaeleon Cha 11 80 S Circinus Cir 15 60 S Corona Austrina CrA 19 40 S Corvus Crv 12 20 S Corvus Crv 12 20 S Crux Cru 11 15 S Crus							
Canis Major CHa 7 20 S Canis Minor CAi 8 5 N Capricornus Cap 21 20 S Carrina Car 9 60 S Cassiopeia Cas 1 60 N Centaurus Cen 13 50 S Cepheus Cep 22 70 N Cetus Cet 2 10 S Circinus Cir 15 60 S Columba Col 6 35 S Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corona Borealis CrV 12 20 S Crater Crt 11 15 S Crux Cru 12 60 S Cygmus Cyg 21 40 N Dorado Dor 5 65 S' Draco Dra 17							
Canis Minor CMi 8 5 N Capricornus Cap 21 20 S Carina Car 9 60 S Cassiopeia Cas 1 60 N Centaurus Cen 15 50 S Cepheus Cep 22 70 N Cetus Cet 2 10 S Chamaeleon Cha 11 80 S Columba Col 6 35 S Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corona Borealis CrV 12 20 S Crux Cru 12 60 S Corvus Cru 12 60 S Crux Cru 12 60 S Cygnus Dor 5 65 S Draco		20 March 1					
Capricornus Cap 21 20 S Carina Car 9 60 S Cassiopeia Cas 1 60 N Centaurus Cen 13 50 S Cepheus Cep 22 70 N Cetus Cet 2 10 S Chamaeleon Cha 11 80 S Circinus Col 6 35 S Coma Berenices Con 13 20 N' Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corvus CrV 12 20 S Crater Crt 11 15 S Crygnus Del 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S' Draco							
Carina Car 9 60 S Cassiopeia Cas 1 60 N Centaurus Cen 13 50 S Cepheus Cep 22 70 N Cetus Cet 2 10 S Chemaeleon Cha 11 80 S Circinus Col 6 35 S Columba Col 6 35 S Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corona Borealis CrV 12 2D S Crux Cru 12 20 S Crux Cru 12 60 S Cygnus Del 21 10 N Dorado Dor 5 55 S Draco Dra 17 65 N Grus Gru					- 10 km		
Cassiopeia Cas 1 60 N Centaurus Cen 13 50 S Cepheus Cep 22 70 N Cetus Cet 2 10 S Chamaeleon Cha 11 80 S Circinus Cir 15 60 S Columba Col 6 35 S Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corous CrV 12 2D S Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S Draco Dra 17 65 N Erdianus E							
Centaurus Cen 13 50 S Cepheus Cep 22 70 N Cetus Cet 2 10 S Chamaeleon Cha 11 80 S Circinus Cir 15 60 S Columba Col 6 35 S Corona Berenices Com 13 20 NV Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corona Borealis CrV 12 2D S Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S Draco Dra 17 65 N Erdianus </td <td></td> <td></td> <td></td> <td></td> <td>1000</td> <td></td> <td></td>					1000		
Cepheus Cep 22 70 N Cetus Cet 2 10 S Chamaeleon Cha 11 80 S Circinus Cir 15 60 S Columba Col 6 35 S Corna Berenices Com 13 20 N'' Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corous Crrux 12 20 S Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S' Draco Dra 17 65 N Eridanus Eri 37 20 S Fornax					0.0012.0	1000	
Cetus Cet 2 10 S Chamaeleon Cha 11 80 S Circinus Cir 15 60 S Columba Col 6 35 S Coma Berenices Com 13 20 NV Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corvus CrV 12 20 S Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S Draco Dra 17 65 N Equileus Equil 21 10 N Eridanus Erri 37 20 S Fornax					1.000		
Chamaeleon Cha 11 80 S Circinus Cir 15 60 S Columba Col 6 35 S Coma Berenices Com 13 20 NV Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corona Borealis CrV 12 2D S Corona Borealis CrV 12 2D S Corvus Crv 12 2D S Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S' Draco Dra 17 65 N Equileus Equi 21 10 N E							
Circinus Cir 15 60 S Columba Col 6 35 S Coma Berenices Com 13 20 N' Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corona Borealis CrV 12 2D S Crater Crt 11 15 S Crux Cru 12 20 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 5 S Draco Dra 17 65 N Equileus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini						1.22	
Columba Col 6 35 S Coma Berenices Com 13 20 NV Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corona Borealis CrB 16 30 N Corona Borealis CrV 12 2D S Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S: Draco Dra 17 65 N Equileus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td>						1.00	
Coma Berenices Com 13 20 NV Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corona Borealis CrB 16 30 N Corona Borealis CrB 16 30 N Corous CrV 12 20 S Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S Draco Draco Draco 5 5 Poraco Dra 17 65 N Equileus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemi						100	
Corona Austrina CrA 19 40 S Corona Borealis CrB 16 30 N Corvus CrV 12 2D S Crater Crt 11 15 S Crux Cru 12 60 S Cygmus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S Draco Dra 17 65 N Equileus Equileus Equileus 21 10 N Eridanus Eri 37 20 S S Fornax For 3 30 S Gemini Grus 22 45 S Hercules Her 17 30 N N Horologium N S 60 S S S S S S S S S							
Corona Borealis CrB 16 30 N Corvus Crv 12 2D S Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S' Draco Dra 17 65 N Equuleus Equ 21 10 N Eridanus Bri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Horologium Hor 3 60 S Hydra Hya 10 20 S Hydrus Hyi <		0.2020/00/2					
Corvus Crv 12 2D S Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S' Draco Dra 17 65 N Equileus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Horologium Hor 3 60 S Hydrus Hya 10 20 S Hydrus Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21							
Crater Crt 11 15 S Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S Draco Dra 17 65 N Equileus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Horologium Hor 3 60 S Hydrus Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Crux Cru 12 60 S Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S' Draco Dra 17 65 N Equuleus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Hydra Hya 10 20 S Hydrus Hya 10 20 S Hydrus Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Cygnus Cyg 21 40 N Delphinus Del 21 10 N Dorado Dor 5 65 S° Draco Dra 17 65 N Equileus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Horologium Hor 3 60 S Hydra Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Delphinus Del 21 10 N Dorado Dor 5 65 S° Draco Dra 17 65 N Equuleus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Horologium Hor 3 60 S Hydra Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N	CONTRACTION OF THE OWNER						
Dorado Dor 5 65 S: Draco Dra 17 65 N Equuleus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Horologium Hor 3 60 S Hydra Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Draco Dra 17 65 N Equuleus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Horologium Hor 3 60 S Hydra Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Equileus Equ 21 10 N Eridanus Eri 37 20 S Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Hydra Hor 3 60 S Hydrus Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Initial Initial <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Fornax For 3 30 S Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Horologium Hor 3 60 S Hydra Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Gemini Gem 7 20 N Grus Gru 22 45 S Hercules Her 17 30 N Horologium Hor 3 60 S Hydra Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N		7.567.677			2.557.0	S	
Grus Gru 22 45 S Hercules Her 17 30 N Horologium Hor 3 60 S Hydra Hya 10 20 S Hydra Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N					-		
Hercules Her 17 30 N Horologium Hor 3 60 S Hydra Hya 10 20 S Hydra Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Horologium Hor 3 60 S Hydra Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Hydra Hya 10 20 S Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Hydrus Hyi 2 75 S Indus Ind 21 55 S Lacerta Lac 22 45 N							
Indus Ind 21 55 S Lacerta Lac 22 45 N							
Lacerta Lac 22 45 N							
1 15 N		100000					
Leo Leo II 15 M							
	Leo	Leo		11	1	1	

CONSTELLATIONS

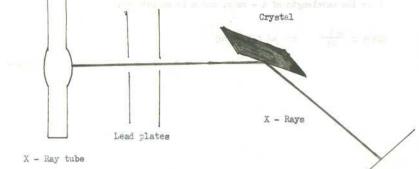
CONVERSIONS, 6-FIGURE

LENGTH:

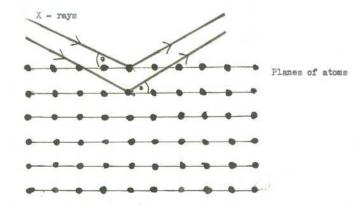
		m	cm	in	ft
1	metre	1	100	39.3701	3.28084
1	centimetre	0.01	1	0.393701	0.0328084
1	inch	0.0254	2.54	1	0.0833333
1	foot	0.3048	30,48	12	1

		km	mi	n.mi
1	kilometre	1	0.621371	0.539957
1	mile	1.60934	1	0.868976
1	nautical mi.	1.8520	1.15078	1

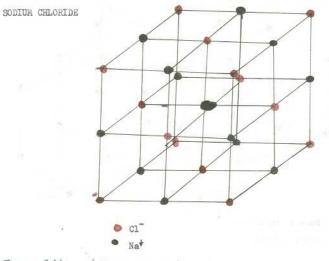
l light yezz = 9.46070×10^{15} metres = 5.87848×10^{12} miles 1 astronomical unit = 1.495×10^{11} metres 1 parsec = 3.0857×10^{16} metres = 3.2616 light years


VELOCITY:

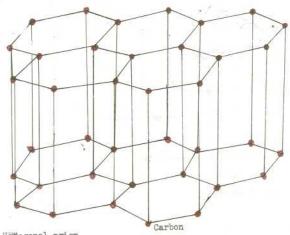
	m/sec	km/hr	mi/hr	ft/sec
1 metre/second	1	3.6	2.23694	3.28084
1 kilometre/hr.	0.27778	1	0.621371	0.911346
1 m.p.h.	0.44704	1.609344	1	1.46667
1 ft/sec.	0.30480	1.09728	0.681817	1


MASS:

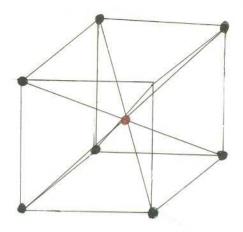
		kg	g	.lb.	long ton
1	kilogram	1	1000	2.20462	984207 X 10 ⁻⁹
1	gram	0.001	1	220462 X	10 ⁻⁸ 984207 X 10 ⁻¹²
1	pound	0.453592	453.592	1	4.46429
1	long ton	1016.047	1016047	2240	1


CRYSTALLOGRAPHY, X - RAY "Constitution and the second state of the sta

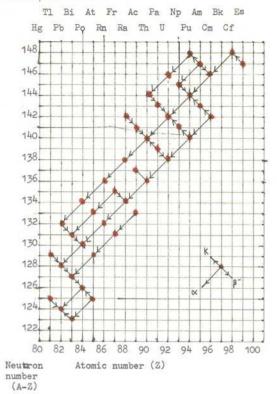
Photographic plate



CRYSTAL STRUCTURE

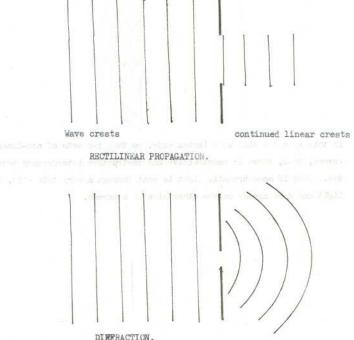

Shape : Cubic (Face - centered) Type : Covalent (Molecular)

GRAPHITE

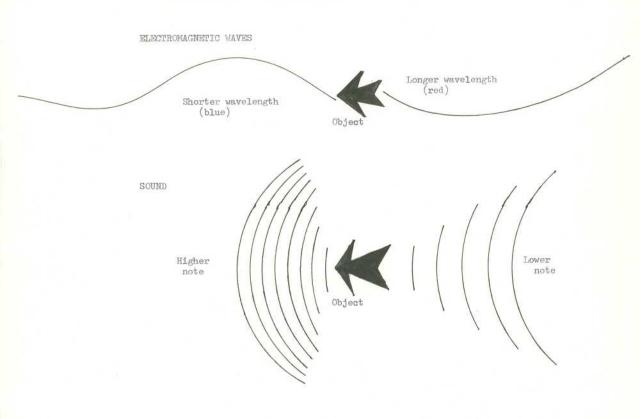


Type : Atomic

Cesium Chloride (Body centered) Shape : Cubic Type : Covalent


DECAYS, RADIOACTIVE

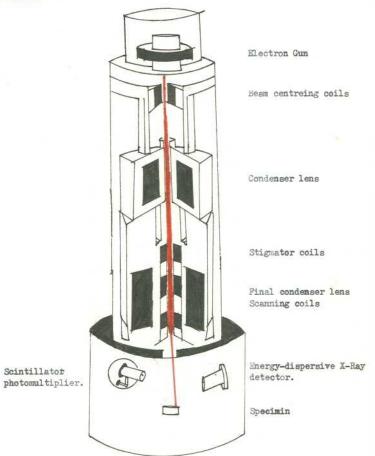
DENSITY.


	gm/cc
Atomic nuclei	IO ¹⁴
Center of densest stars	10 ⁵
24 - carat gold	19.3
Mercury	13.6
Earth's Nickel-Iton core	@ 12
Lead	11.3
Stell	7.6 - 7.8
Titanium	4.5
Diamond	3.53
Aluminium	2.70
Quartz	2,65
Lucite	1.16 - 1.20
Human body (average)	1.07
Water	1
Ice	0.917
Buttter	0.87
Cork	0.24
Liquid hydrogen	0.071
Room air	1.2 X 10 ⁻³
Air at 20 kms	9 x 10 ⁻⁵
Interstellar space	10-21
Intergalactic space	10 ⁻²⁴

This occurs when the slit is in the region of the wavelength of the the waves. As the wave tries to push through the hole it is 'bent'. This accounts for sound being heard 'round a corner'.

DOPPLER EFFECT.

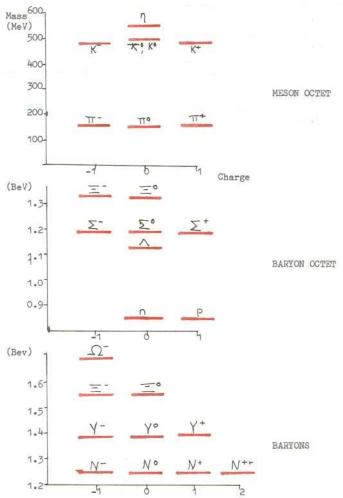
ELECTRON CONFIGURATIONS AND IONIZATION POTENTIALS OF THE COMMONER


ELEMENTS

Monization potentials (Electron Volts)

Element	At.	No	K	L	Μ	Ν	0	Ρ	I	II	III	IV	V
H	1		1						13.59				
He	2		2 2						24.48				
C	6		2	4					11.26	24.38		64.48	392.0
N	7		2	56					14.53	29.59	47.43	77.45	97.86
0 F	8		2						13.61	32.11	54.89	77.39	113.9
F	1267890		2	$\begin{array}{c} \mathbf{c} \otimes $					7.87	16,18	30.64	56.80	114.2
Ne	10		2	8					21.56	41.07	63.50	97.02	126.3
Na	11		2	8	1				5.14	47.29	71.71	98.88	138.4
Mg	12		5	8	234				7.64	15.03	80.14	109.29	141.2
Al	13		2	8	3				5.98	18.82	28.44	119.96	153.8
Si	14		2	8	4				8.15	16.34	33.49	45.13	166.7
P	15		2	8	56				10.48	19.72	30.16	51.35	65.0
S	16		5	8					10.36	23.40	35.0	47.29	72.5
Cl	17		2	8	7888				13.01	23.80	39.9	53.50	67.8
Ar	18		2	8	8				15.75	27.62	40.9-	.59.8	75,0
K	19		2	8	8	1			4.34	31.81	46.0	60.9	82.6
Ca	20		2	8		2			6.11	11.87	51.2	67.0	84.4
Fe	26		2	8	14	2			7.87	16.8	30.6	56.8	-
Cu	29		2	8	18	1			7.72	20.30	36.8	-	-
Zn	30		2	8	18	2			9•39 11•84	17.96	39.7		-
Br	35		5	8	18	7			11.84	21.60	35.9	47.3	59.7
Kr	36		2	8	18				13.99	24.90	36.9	43.5	63.0
Ag	47		5	8	18	18			7.57	21.5	34.8	-	-
Sn	50		2	8	18				7.34	14.63	30.5	40.7	72.3
I	53		2	8	18				10.45		-	-	-
Xe	54		2	00 00 00 00 00	18				12.13	21.2	31.3	42.0	53.0
Cs	55		2	8	18	18	8	1	3.89	25.1	35.0	-	-
Ba	56		N N N N N N N N N N N N N N N N N N N	8	18			2	5.21	10.0	35.5	-	-
Hg	80		2	8	18	32	18	2	10.43	18.75	34.2	49.5	-

N.B. The nearest shell to the nucleus is K and then L, and so on.


ELECTRON MICROSCOPE

The reflected beam of electrons is then put through a series of magnetic lenses which serve to spread it out up to a magnification of IOO,000 X, and the stream of electrons fall on a fluorescent screen which produces a image. The reflected X-Rays can be used spectroscopically to determine the constituents of the specimin. One of the advantages of an electron microscope is that it has a field of view and depth of view 300 times better than a light microscope. ELEMENTRY PARTICLES

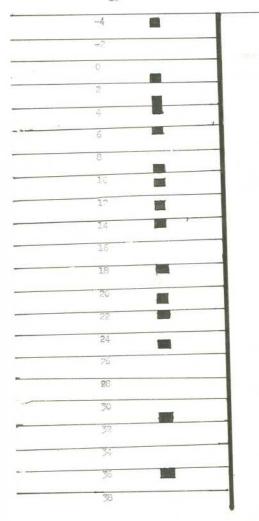
Particle	Symbol	Mass	Spin	<u>Lifetime</u>	Charge	Strangeness
FERMION S BARYON		(MeV)		(secs)		
NUCLEONS						
Proton	P	938.26	1/2	Stable	1	0
Neutron	n	939.55	1/2	IOIO	0	0
HYPERONS					0	
Xi-particles	Ξ*	1314.9	1/2	2.9 X 10-10	0T	-2
	Ξ-	1321.3	1/2	1.7 X 10 ⁻¹⁰	ΞI	-2
Sigma particl	es Σ*	1189.5	1/2	S.I X IO ^{-II}	L	-I
	2°	1192.5	$\frac{1}{2}$	10-14	C	-I
	Σ-	1197.4	1/2	1.66 X IO ^{-IO}	4I	-I
Lambda-partic	le 🔨	1115.5	$\frac{1}{2}$	2.5 X 10 ⁻¹⁰	Q	-I
Omega-particl	e N	1672	11/2	1.1 X 10 ⁻¹⁰	-I	-I
LEPTONS						
-						
Electron	e	0.511	$\frac{1}{2}$	Stable	-I	0
Neutrino	х	0	ł	Stable	0	0
Muon	H-	105.66	1/2	2.2 X 10-6	-I	0
BOSONS						
MESONS						
-						
Eta-particle	0 °	548.8	0	?	0	0
Kaons	K •	497.8	0	IO-IO	0	-I
	K-	493.8	0	1.2 X 10 ⁻⁸	-I	-I
	K+	493.8	0	1.2 X 10 ⁻⁸	I	I
Pions	π^*	139.6	0	2.6 X 10 ⁻⁸	I	0
	ττ°	135	0	10-16	0	0
	π-	139.6	0	2.6 X 10 ⁻⁸	-I	CO
Photon	Y	0	I	Stable	0	-

ELEMENTARY PARTICLES

ELEMENTS.

Mamo	2.1.2		10.122		
Name:	Symbol:	At. No .:	A.W.:		
Actinium	Ac	89	(227)		
Aluminium	Al	13	26.9815		
Americiam	Am	95			
Antimony	Sb	51	(243) 121.75		
Argon		18			
Arsenic	Ar		39.948		
Astatine		33	74.9216		
Barium	At	85 56	(210)		
Berkelium	Ba		137.34		
	Ekc	97	(247)		
Beryllium	Be	4	9.0122		
Bismuth	Bi	83	208.98		
Boron	В	5	10.81		
Bromine	Br	35	79.904		
Cadmium	Cd	48	112.40		
Caesium	Cs	55	132,905		
Calcium	Ca	20	40.68		
Californium	Cf	98	(251)		
Carbon	C	6	12.0II		
Cerium	Ce	58	140.12		
Chlorine	Cl.	17	35.453		
Chromium	Cr	24	51.996		
Cobalt	Co	27	58.9332		
Copper	Cu	29	63.546		
Curium	Cm	96	(247)		
Dysprosium	Dy	66	162.50		
Einsteinium	Es	99	(254)		
Erbium	Er	68	167.26		
Europium	Eta	63	151.96		
Fermium	Fm	100	(257)		
Fluorine	F	9	18,9984		
Francium	Fr	87	(223)		
Gadolium	Gd	64	157.25		
Gallium	Ga	31	69.72		
Germanium	Ge	32	72.59		
Gold	An	79	196.967		
Hafnium	Hf	72	178.49		
Helium	He	2	4.0026		
Holmium	Но	67	164.930		
Hydrigen	H	1	1.00797		
Indium	In	49	114.82		
Indium	I	53	126.9044	Particulary.	
	Ir	77b	192.2		
Iridium	Fe	26	55.847		
Iron		1048	22.04/ 83.80		
Krypton	Kr	36	02.00		

Titanium	Ti	22	47.90
Tungsten (Wolfram)	W	74	183.85
Uranium	υ	92	238.03
Vanadium	V	23	50.942
Xenon	Xe	5#	131.30
Ytterbium	Yb	70	173.04
Yttrium	Y	39	88.905
Zinc	Zn	30	65.37
Zirconium	Zr	40	91.22


In the Atomic Weights, 1 equals 1/12 of the weight of Carbon isotope I2.

ENERGY.

There are seven forms of energy: Kinetic, Potential, Heat, Electrical, Chemical, Radiant. and Atomic. Out of these, only one can exist on its own in space: Radiant energy. All the others need some sort of medium, or come from matter itself, like Atomic energy. Energy is described as the ability to do work. In the natural world, except for a few cases where matter is turned into energy and vice-versa, no energy can be destroyed or created in the universe. Thus we arrive at the law of the conservation of energy . This law states that whatever energy transfers take place . no energy can ever be lost. We will now take an example of an energy chain. We will start at the sun which is 'Driven ' by atomic energy . The exact method will be discussed later , this produces radiant energy in the form of light and heat . This light then falls onto a photoelectric cell which converts it into electrical energy . This electrical energy is then used to electrolise a chemical solution turning its chemical energy into heat . Thus we have used up all the types of energy known . Nearly all the energy on this earth originates from the sun e.g. fossilised fuels etc. . but a very small amount e.g. volcanoes originate from the earth itself. It is possible to convert any given type of energy to any other except for a very few combinations . These include radiant to kinetic and atomic to kinetic and electrical . There is another type of energy inherent in the very structure of the universe as we know it at present. This is a store of energy which has not yet been tapped by man. It exists as the combination between matter and anti-matter . When an atom and an anti-atom meet a considerable amount of energy is produced , a radiation called annihilation radiation and total annihilation of both particles takes place. This is the only time when $e = mc^2$ is truly valid. Before going into the different types of energy it is worthy saying that, as we go on, all the energy in this universe is gradually being turned into heat which then diffuses into the cosmos. This entropy is called the heat death of the universe, and is discussed from another angle in another article. We will start with heat energy . This energy comes in the form of the kinetic energy of molecules in a substance . The more they move around , the more heat energy the substance is said to have . There are three methods by which heat can be transferred between two things . n.b. it is impossible in nature for heat to be transferred between a cold body which already has the heat and a hot body .

ERG-

LOGIO

Splitting of Uranium atom

Moonlight for one second

Bees wing beat

Pressing down typewriter key

Lethal X-ray dose

Burning metch

Speeding van

Bay's work for woodcutter

Atlas liftoff.

A-bomb (first one)

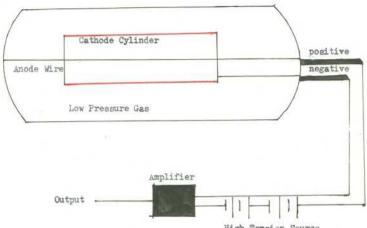
Hurricaine

IOO-megaton H-bomb

Earth's annual share of Sun's heat

Earth sppinning on its axis

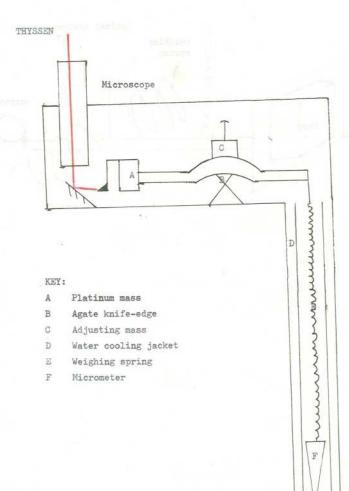
FOOD , CALORIFIC VALUES OF

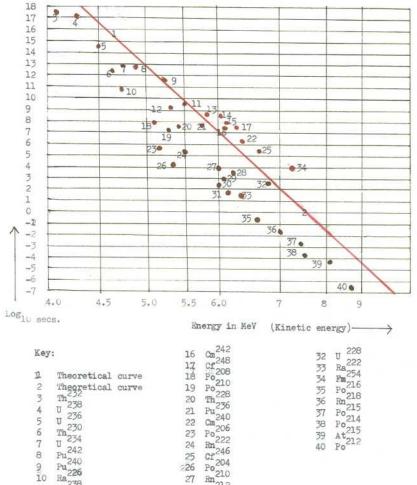

Kilojoules / 100 g

PROTEINS

Cheese	1680
Lean meat	1200
Eggs	700
Liver	600
White fish	300
CARBOHYDRATES	
Chocolate	2300
Sugar	1600
Wholemeal bread	1000
FATS	
Butter	2900
Margarine	2900
Olive oil	2900
Fat meat	2900
OTHERS	
Peas	420
Boiled potatoes	340
Milk	300
Fresh fruit	200
Green vedgetables	150

GEIGER COUNTER.

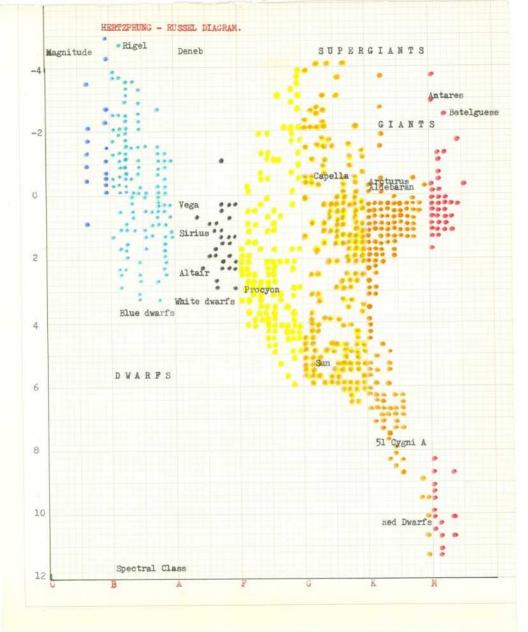

(Geiger-Mueller Tube)

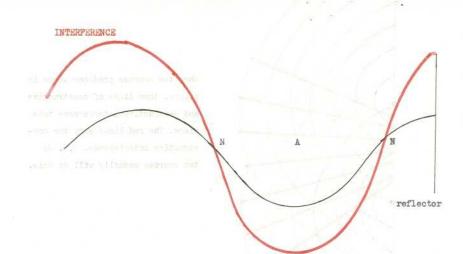


High-Tension Source

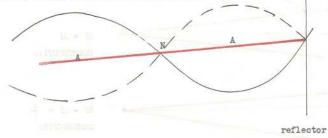
The low pressure gas is usually Argon, with a tough of Alcohol vapour in. The pressure is maintained at about 5 mm. Mg.. When an alpha, beta, or gamma particle passes between the anode and the cathode, positive ions and electrons are produced in equal numbers. The potential difference between the anode and the cathode beigg very high (IOOO volts), the electrons quickly collect on the anode wire, causing an electrical pulse which is amplified and then displayed visually or surally. The positive ions slowly diffuse onto the cathodé.

GRAVITY METERS

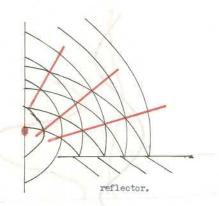


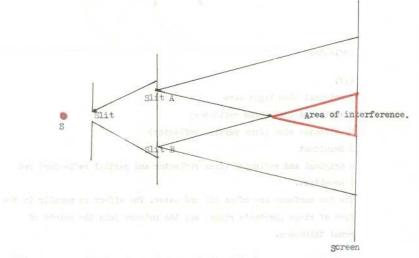


27 Rn 210 28 Bi 202 28 Bi 29 Rn208 30 Po218 31 Rn

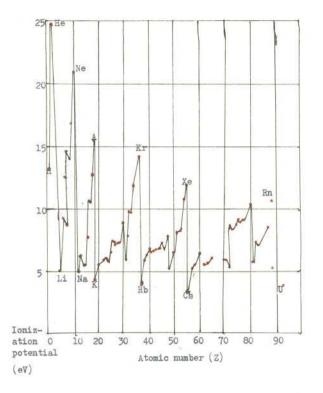

Key:

1	Theoretical	curve
2	Theoretical	curve
3	Th_238	
4	U 200	
5	U 200	
6	Th250	
7	U 204	
8	Pu242	
9	Pu	
9 10	Ra 220	
11	Pu 230	
12	U 202	
13	Cm 244	
14	Cf 252	

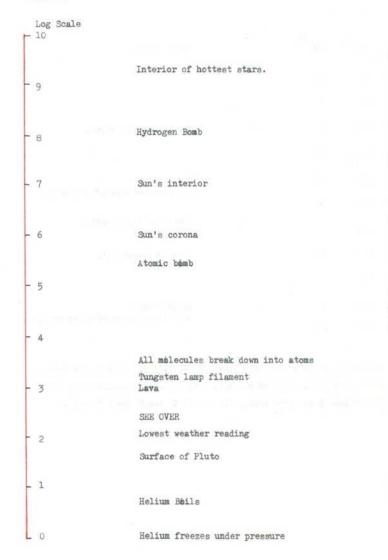

When the reflector is placed at the crest or through of the wave, the resultant reflected wave is coincident with the original, thus doubling the amplitude. this is called CONSTRUCTIVE INTERFERENCE.


If the reflector is half-way between the crest and trough of the wave, then the crest of the reflected wave is co-incident with the trough of the original and vive-versa, thus meaning that the two waves cancell each other out, leaving nothing. This is called DESTRUCTIVE INTERFERENCE.

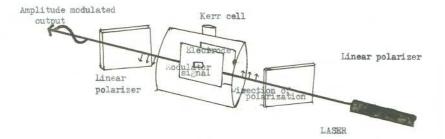
The A on each digram represents the anti-node, and the N the node. The node is the point at which the three waves meet, and the antinode is the point where they are fatthest spart.


All & morecen rule & charts & fighter a more

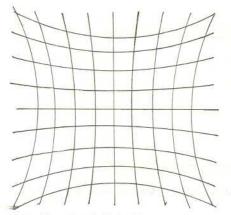
Lloyd's mirror. Interference using a reflector.

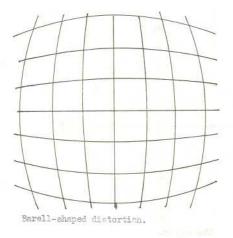


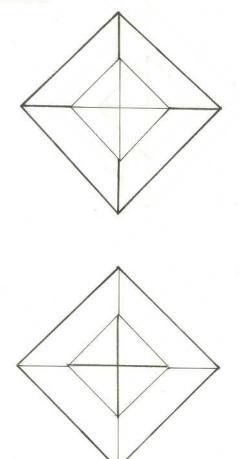
This is a practical method of demonstrating the two source interference pattern.

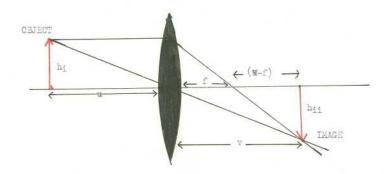


Ionization potential means the energy needed to free one electron from the nucleus.


KELVIN.

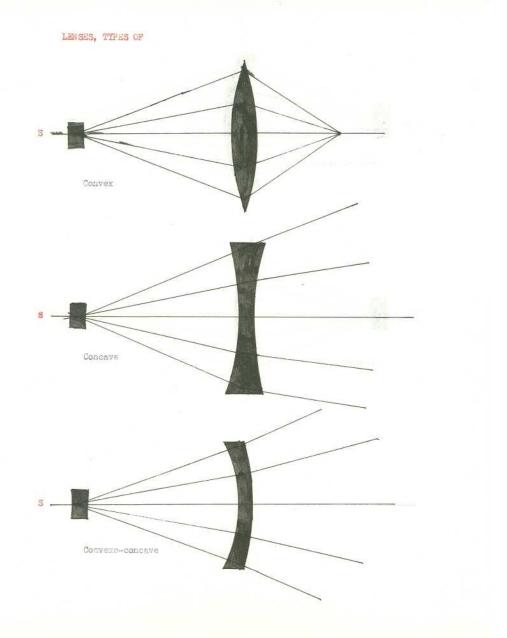

12 1.77


The Kerr effect is that, when polarized light passes through a medium like nitrobenzene to which a high potential differance is applied, the direction of polarization is changed. Thus if there is a large potential differance in the liquid, the direction of polarization is rotated so that it is impossible for it to get through a second polarizer. This effect occurs in times of down to 10^{-8} seconds. Thus it is used for high speed shutters and as a means of modulating a LASER beam.



Pincushion-shaped distortion.

LENS ASTIGMATISM.



$$\frac{h_{\underline{i}}}{h_{\underline{i}\underline{i}}} \quad \text{equals} \; \frac{f}{(v-f)}$$

$$\frac{h_1}{h_{11}}$$
 equals $\frac{u}{v}$

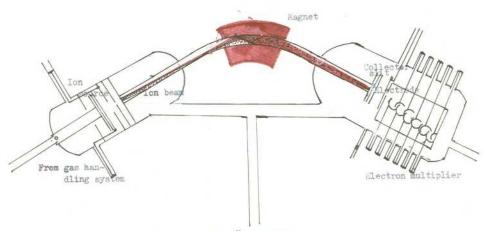
 $\frac{1}{u} \quad \frac{1}{v} \quad \frac{1}{v} \quad \frac{1}{f}$

LIGHT, INTENSITY OF

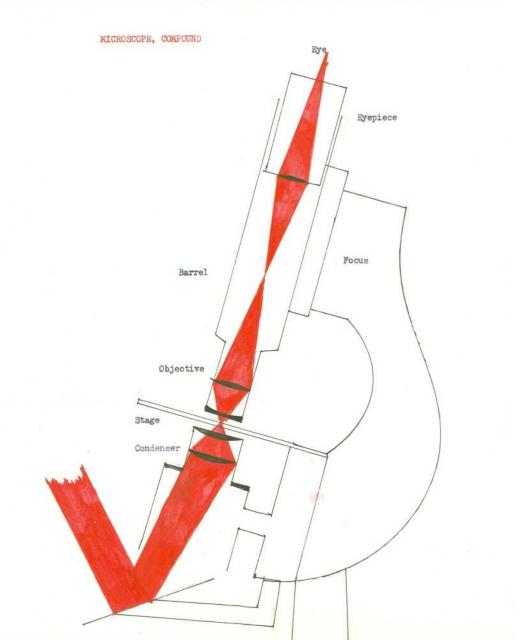
The solid angle of space surrounding a given is 4- units, thus one unit is about 8 % (exactly 7.963 %). The luminous intensity of a light source is described as the luminous flux (flow) emitted per unit solid angle, or the luminous energy emitted per unit solid angle per second. However, experiment shows that the amount of energy produced by a filament is not equal all over a shhere, but depends on the direction of the filament. The unit of light intensity is the Candela (cd). This is described as the luminous intensity of liquid platinum under certain conditions. A 60 - watt bulb has a mean luminous intensity of about 50 cd. The luminous effeciency of a light source is described as lumens per watt. A lumen is the luminous flux emitted by a source of 1 cd in 1 unit solid angle. An 100 W tungsten (Wolfram) filament lamp has a luminous effeciency of 15 lumens per watt. The intensity of illumination of a surface is described as the luminous flux per unit area incident on it. Luminous intensity refers to a source, illumination to a receiving body. The lux is the illumination around a point P on a surface when a light of 1 cd is 1 metre from the point P in a perpendicular direction. A minimum illumination of 150 lux for libriares. 300 for offices, and 3000 for industry using micro-components, is recommended.

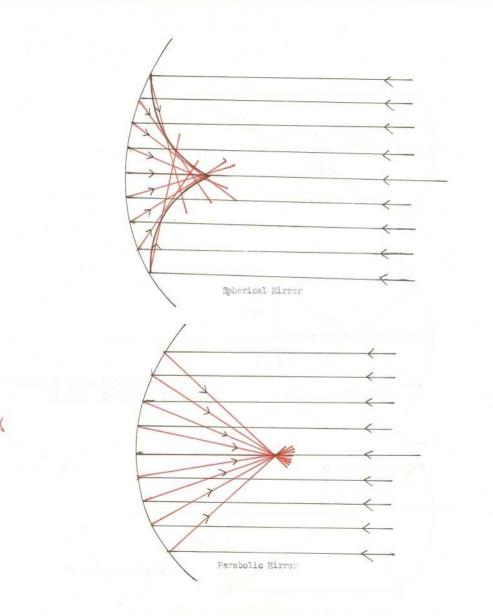
Illumination E equals Luminous intensity I over distance d squared.

$$E = \frac{I}{d^2}$$


LIGHT, VELOCITY OF

Measurements of:


Date	Author	Method	Result	(km/s)	Error	(plus or minus)
1676	Roemer	Jupiter's satellites	214000			
1726	Bradley	Aberration of stars	301000			
1849	Fizeau	Toothed wheel	315000			
1862	Foucault	Rotating mirror	298000		500	
1872	Cornu	Toothed wheel	298500		900	
1874	Cornu	Deflection of light	300400		800	
1878	Michaelson	Deflection of light	300140		700	
1879	Michaelson	Deflection of light	299910		50	
1882	Newcomb	Deflection of light	299810		30	
I882	Michaelson	Deflection of Light	299853		60	
1908	Perrotin	Toothed wheel	29990I		84	
1908	Rosa	Ratio of units	299788		30	
1923	Merciar	Lecher wires	299795		30	
1924	Michaelson	Rotating mirror	299802		30	
1926	Michaelson	Rotating mirror	299796		4	
1928	Karolus	Kerr cell	299778		20	
1935	Michaelson	Rotating mirror	299774		11	
1937	Anderson	Kerr cell	29977I		12	
1940	Huttel	Kerr cell	299768		10	
1941	Anderson	Kerr cell	299776		14	


From an average of relaible results, the velocity of light (c) is now held to be: 29979250000 cms/sec.

Thus, in one year light travels: 94542562800000000 cms Light travels 887544.052654 times as fast as sound. Light from the Sun takes 496.333304 secs or 8,272388 mins to reach Earth. Light from the moon takes 0.948656 secs to reach Earth.

Vaccuum pump

Advance line of apsides, (mean) period = 8.8503 years; annual change = 40° .677 Albedo, average = 0.07

Average length of months : Synodic 29.530588 days

and the second se	
Sidereal	27.321661 days
Anomalistic	27.554550 days
Tropical	27.321582 days
Nodical	27.212220 days

Circumference = 10930 kms = 6790 miles; one degree = 30.38 kms = 18.86 miles

Diameter (mean) = 3476 kms = 2160 miles; angular diameter (mean) = 31' 07"

Distance : Mean 384000 kms = 239000 miles = 60.3 earth radii

Min 357000 kms= 222000 miles

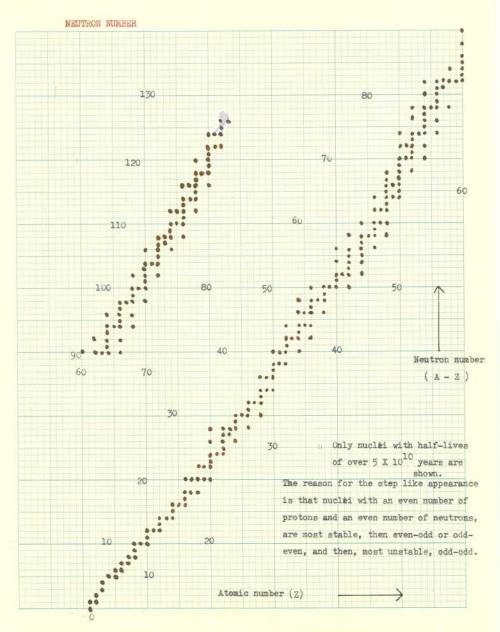
Max 407000 kms =253000 miles

Fraction of surface always visible = 41 %; sometimes visible 18 %

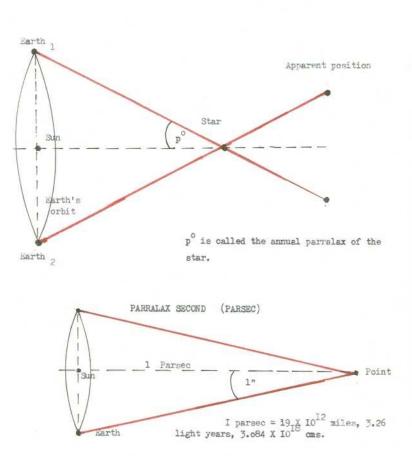
Inclination of moon's equator to ecliptic = 1° 35'


Inclination of orbit plane to earth's equator : max = $28^{\circ} 35'$, min = $18^{\circ} 19'$ Librations : maximum in latitude, each direction = $6^{\circ} 50'$

maximum in longditude, each direction = 7° 54'


Magnitude of full moon = -12.5Mass = 7.32×10^{25} grams = 8.0×10^{19} tons = 0.01226 of Earth's mass Maximum orientation of lunar axis to rotation = 24.4° in each direction Mean eccentricity of orbit = 0.0549Mean parallax = 57' 02''.54Mean velocity in orbit = 3680 km/hour = 2287 m.p.h. = 33 miniutes of arc/hour Regression of nodes, period = 18.5995 years, annual change = 19.358° Specific gravity (mean) = 3.34 : ratio to Earth's mean = 0.6043Surface gravity = 162 cms/sec² = 5.31 ft/sec² = 0.165 of Earth's Temperature of surface, sun at zenith = 101 C : night = -157 C (approximately) Velocity of escape at surface = 2.38 km/sec = 1.48 miles/sec = 0.213 Earth's

MOON


```
NEON LIGHTING.
```

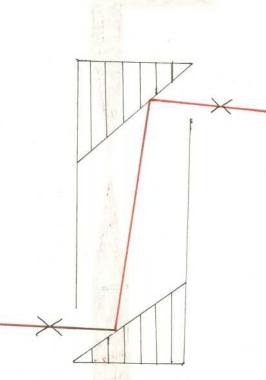

If the electron moves back to its original orbit in steps, then the steps further away from the nucleus will give off less energy, than the ones near it, due to the fact that the electron is further from the attraction of the nucleus. The wavelength of the light emited, as $E = \frac{hc}{l}$ the wavelength of the light is greater on the steps further away from the nucleus.

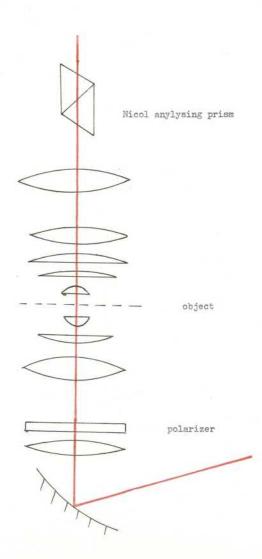
and the second sec

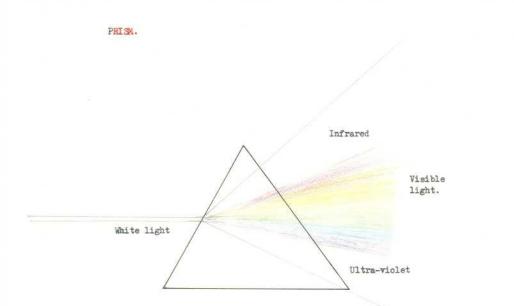
PERIODIC TABLE

1A	2A	3B	4B	5B	6B	7B		8		1B	2B	3A	4A	5A	6A	7A	0
1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 12 Mg			TF	ANSI	TION	ELF	MENT	S			13 Al	14 Si	15 P	16 S	17 C1	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 ©n	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 RЪ	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Ca	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	≸6 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 0s	77 Ir	78 Rt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 [*] Ac															
Lan	than	ides	*57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Act	inid	* les	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Am	95 Cm	96 Cm	97 Bk	98 Cf	99 Es	100 Fm		102 No	

PERI SCOPE




Diagram of a mirror periscope.


The second reflection cuts out the inversion produced by the first one.

PLANETS.

Mercury	Distance f 0.387099	rom Sun 57.9 ⁶ kms	Sidereal period (yrs 0.24085) Orbit velocity 47 ^(km/s)
Venus	0.723332	108.1	0.61521	35.0
Earth	1.0	149.5	1.0	29.8
Mars	1.523691	227.8	1.88089	24.2
Jupiter	5.202803	778	11.86223	13.1
Saturn	9.538843	I426	29.45772	9.7
Uranus	19.181951	2868	84.01331	6.8
Neptune	30.057779	4494	164.79445	5.4
Pluto	39.4387I (av.)	5896 (av.)	247.686	4.7
Mercury	Mass Der 0.056	nsity (g/cc) : 5.13		Diameter (km) 4840
Venus	0.817	4.97	0,87	12300
Earth	1.00	5.52	1.00	12756
Mars	0.108	3.94	0.38	6700
Jupiter	318.0	1.33	2.64	142800
Saturn	95.2	0.69	1.13	119300
Uranus	14.6	1.56	1.07	47100
Neptune	17.3	2.27	1.41	44800
Pluto	0.9 ?	4 ?	?	5900

Mercury	Rotational period ?	No. of satellites
Venus	?	8
Earth	23 56 04	1
Mars	24 27 23	2
Jupiter	9 50 30	12
Saturn	IO 14	9
Uranus	IO 49	5
Neptune	I4 ?	2
Pluto	6 39 ?	0

As the white light enters the prism it is dispered because the light of longer wavelength bends more than that of shorter.

Waves of red and blue light co-existing as they would in a light beam.

PROPELLANTS. SPECIFIC IMPULSE OF ROCKET

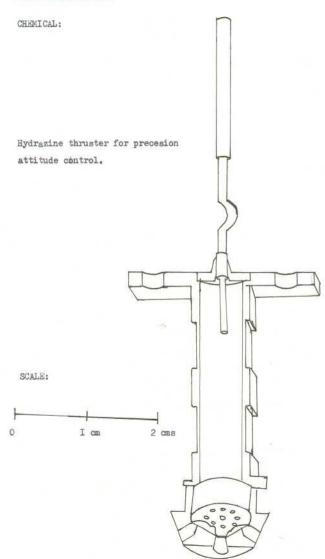
Propellant combinations: Liquid Monopropellants: Low energy monopropellants Hydrazine Ethylene oxide Hydrogen peroxide High energy monopropellants Natromethane Bipropellants (liquid): Low energy bipropellants rerchloryl-fluoride-available fuel Analine Acid J P 4-Acid Hydrogen Peroxide-J P 4 Medium energy bipropellants Hydrazine-acid ammonia-Nitrogen Tetraxide High energy biproppellants Liquid Oxygen - J P 4 Liquid Cxygen - Alcohol Hydrazine - Chlorine trifluoride Very high energy bipropellants Liquid Oxygen - Fluorine-J P 4 Liquid Oxygen - Ozone-J P 4 Liquid Gxygen - Hydrazine Super high energy biproppelants Fluorine - Hydrogen Fluorine - Ammonia Ozone - Hydrogen

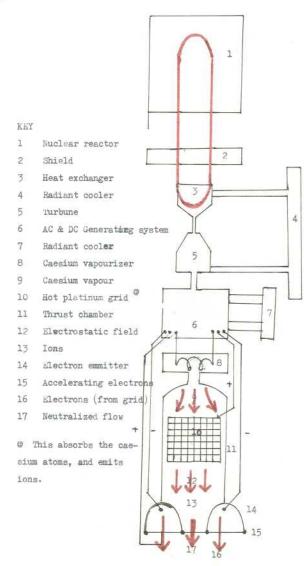
Fluorinen - Diborane

Specific impulses (sec): 160 - 190

190 - 230

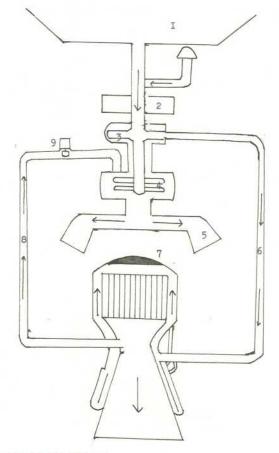
200 - 230


250 - 270


230 - 260

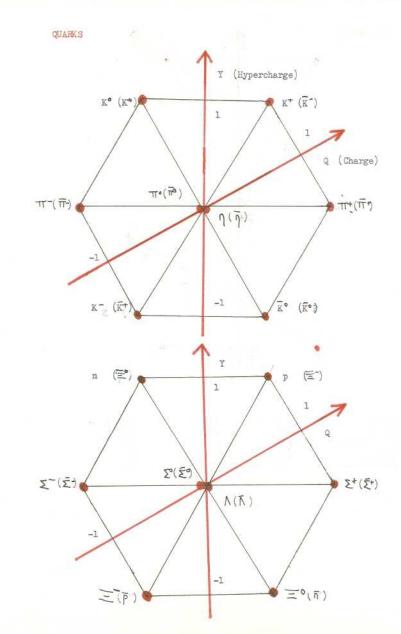
270 - 330

300 - 385



ION

NUCLEAR



NERVA muclear rocket engine diagram.

KEY:

- I Liquid Hydrogen Tank
- 2 Gimbal
- 3 Pump
- 4 Turbine
- 5 Turbopump exhaust

- 6 Noczle coolant pipe (carries full H flow)
- 7 Shield
- 8 Bleed to turbine (7% of reactor efflux)
- 9 Turbine power control valve

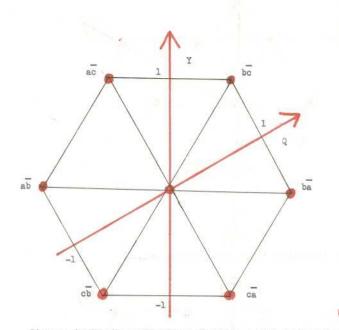
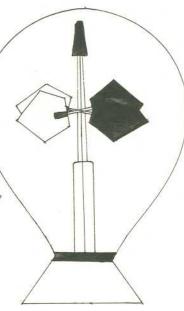
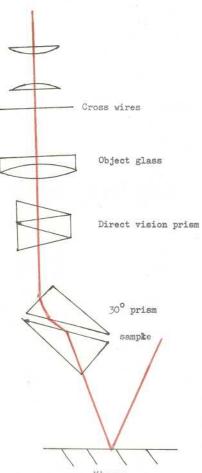


Diagram showing the combinations of Quarks needed to form the previous pictures of Baryons and Mesons.

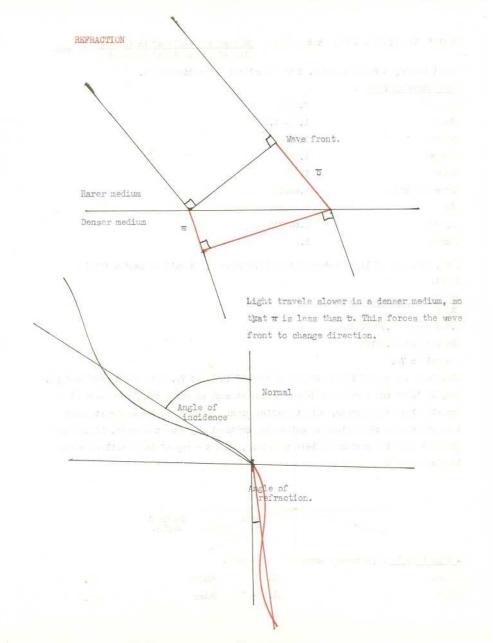
RADIO, FREQUENCY BANDS OF

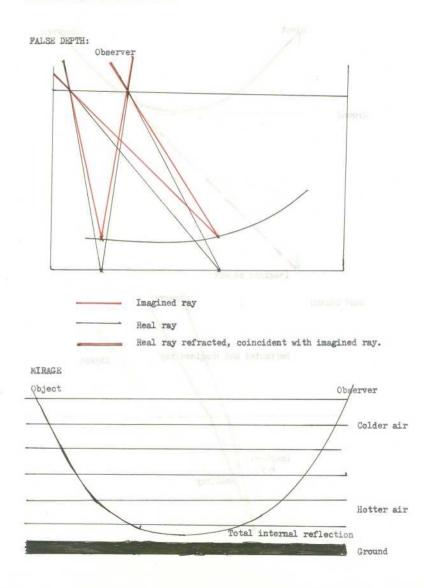

Waveband no.:	Wavelength in cms:	Metric subdivisions:	Name:	
4	10 ⁶ - 10 ⁷	Myriametric	VLF	Very low
5	10 ⁵ - 10 ⁶	Kilometric	LF	Low
6	10 ⁴ 10 ⁵	Hectametric	MF	Medium
7	10 ³ - 10 ⁴	Decametric	HF	High
8	$10^2 - 10^3$	Metric	VHP	Very high
9	10 ¹ - 10 ²	Decimertic	UHF	Ultra high
10	10 ⁰ - 10 ¹	Centimetric	SHF	Super high
11	10 ⁻¹ - 10 ⁰	Millimetric	EHF	Extra high
12	10 ⁻² - 10 ⁻¹	Decimillimetric		

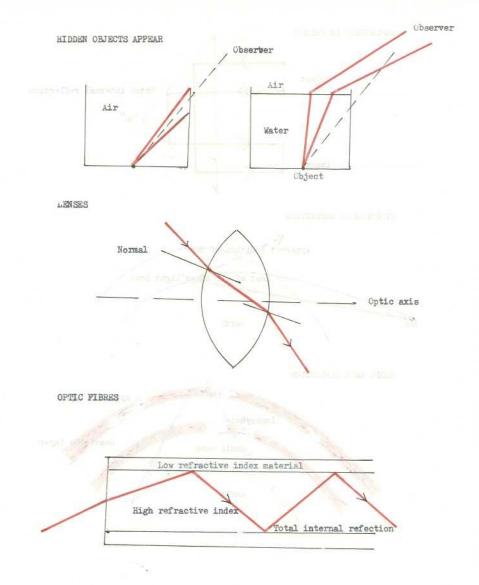
Frequency band:	Frequency range: (Gigacycles)	Wavelength (cms):
P-Band	0.225-0.39	1.40-76.9
L-Band	0.39-1.55	76.9-19.3
S-Band	1.55-5.20	19.3-5.77
X-Band	5.20-10.90	5.77-2.75
K-Band	18.90-36.0	2.75-0.834
Q-Band	36.0-46.0	0.834m0.652
V-Band	46.0-56.0	0.652-0.536
C-Band	3.9-6.2	

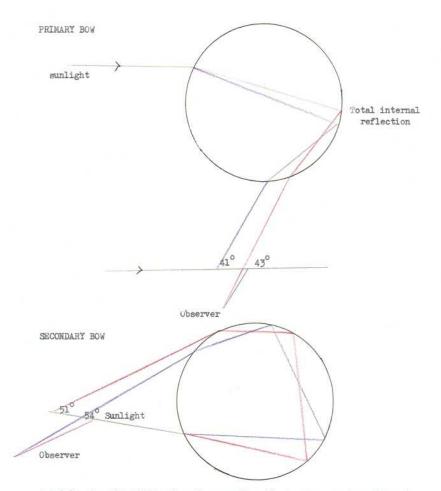

A new waveband has been propped: ELF, to extend from ${\rm 10}^7{\rm -10}^8$ zms.

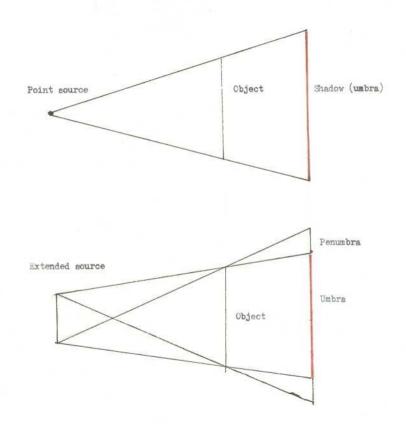
RADIOMETER

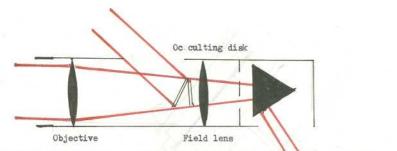

Basically, this instrument works because the black side of the vane absorbs the heat, and the light silvered reflects it, so that it stays cool. Due to a process called 'Thermal Transpiration' more gas molecules collect on the black sides, when the bulb is heated, so that there is pressure. This forces the vanes to turn clockwise, but when the bulb is cooled, the process is reversed, and the vanes retate counter-clockwise.



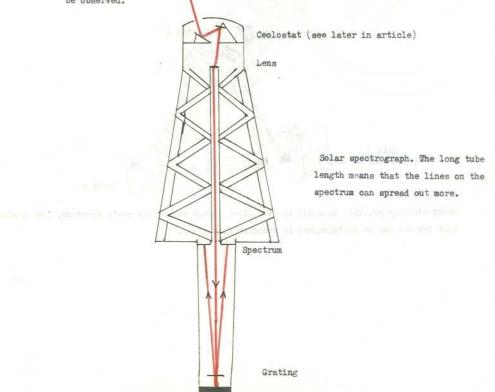


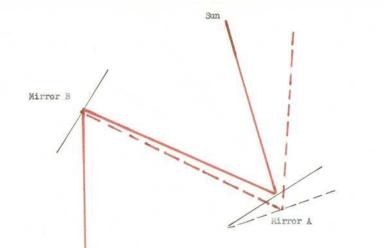

Mirror



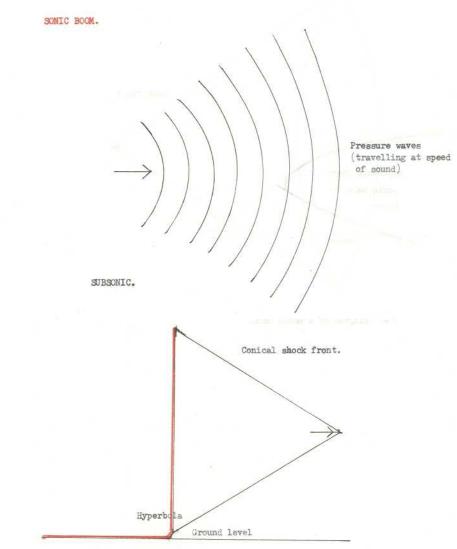

A rainbow is only visible directly away from the Sun because the rainbow is too faint compared with the sun. 10 % of the rain droplets have double internal reflection, so that a secondary bow is very faint.

SATELLITES				
	Distance (I000 kms)	Sidereal perio	od (days)	Magni tude
EARTH				
Moon	384.4	27.32166		-12.5
MARS		BioT.S		
Phobos	9.4	0.31891		II
Diemos	23.5	I.265		12
JUPITER		-diffe.*		
v	181 👘	0,49818		13
Io	422	1.76914		5.5
Europa	671	3.55118		6.I
Ganymede	1071	7.15455		5.I
Callisto	1884	16,68902		6.2
TA	11480	250.57		14.7
VII	11740	259.67		88
X	II860	263.55		19
XII	21200	63I.I		18
XI	22600	692.5		19
VIII	23500	738.9		17
IX	23700	758		I8.6
SATURN				
Mimas	186	0.94242		12.I
Enceladus	238	I.337022		II.7
Tethys	295	I.88780		10. 6
Dione	378	2.73692		10.7
Rhea	587	4.51750		IO
Titan	1222	15.94945		8.3
Hyperion	1481	21.27666		15
Japetus	3562	79.33082		I0.8
Phoebe	12960	550.45		14

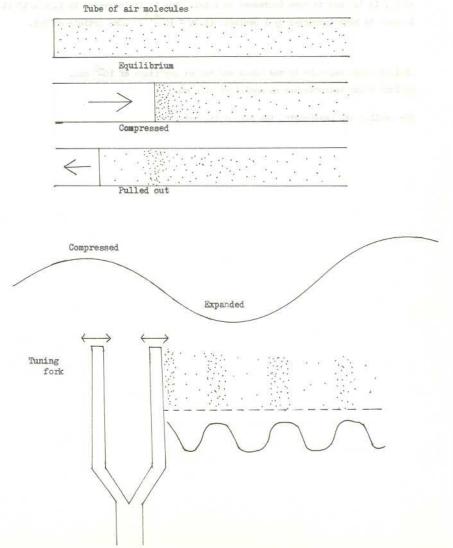

SHADOWS



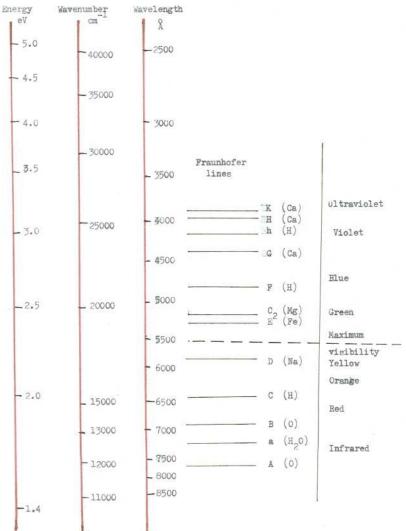
SOLAR INSTRUMENTS.

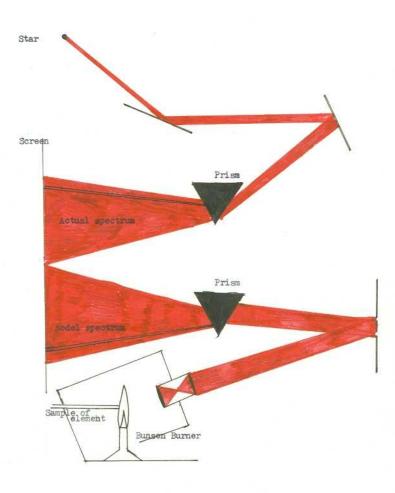


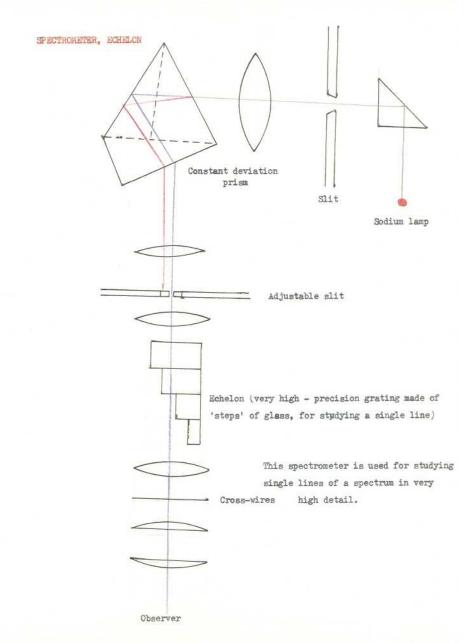
A Coronagraph. This produces an artificial eclipse allowing the solar corona to be observed.

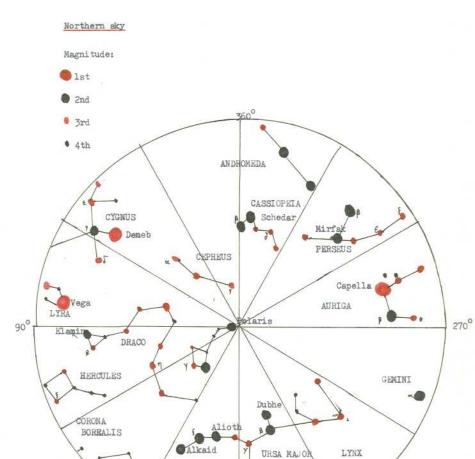


Ceolostat. Mirror A moves with the sun, so that Mirror B reflects it in the same path all the time.

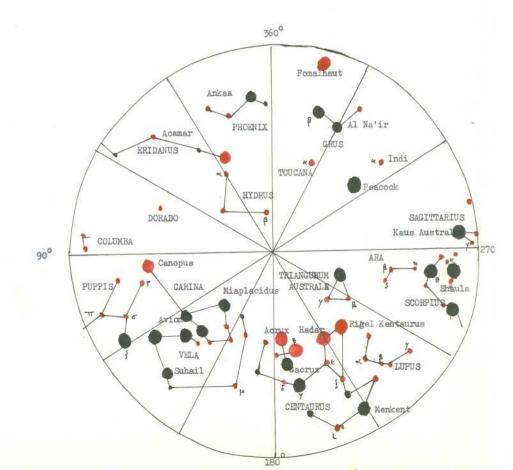

SUPERSONIC


the start is yeld and believe from the sound informating from series by a final sector of the first sector of the sector of the




SOUND

SPECTRAL NEIGHBORHOOD OF LIGHT


BOOTH

CANES VENATICI

1800

STAR MAPS

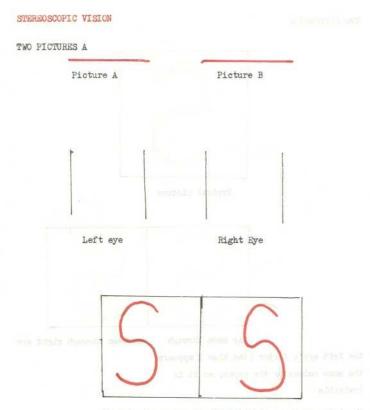
Southern Sky

STARS, DOUBLE

	Magnitudes	Separation	Position angle,
Gamma Andromedae	3.0,5.0	n	060
Zeta Aquarii	4.4.4.6	2.6	291
Gamma Arietis	4.2,4.4	8 n	000
Theta Aurigae	2.7.7.2	3	330
Delta Bootis	3.2,7.4	105	079
	3.0,6.3	2.8	340
Epsilom Bootis		13	
Kappa Bootis	5.1,7.2		237 082
Zeta Cancri	5.6.6.1	5.6	
Iota Cancri	4.4.6.5	31	307
Alpha Canum Venat.	3.2,5.7	20	228
Alpha Capricorni	3.2,4.2	376	291
Eta Cassopeiae	3.7.7.4	11	298
Beta Cephei	3.3,8.0	14	250
Delta Cephei	Var ,7.5	41	192
Xi Cephei	4.7.6.5	6	270
Gamma Ceti	3.7,6.2	3	300
Zeta Coronae Borealis	4.0,4.9	6.3	304
Delta Corvi	3.0,8.5	24	212
Beta Cygni	3.0,5.3	35	055
61 Cygni	4.7,5.9	25	150
Gamma Delphini	4.0,5.0	10	265
Nu Draconis	\$.6.4.6	62	312
	2.0,2.8	2	151
Alpha Geminorum	5,2,8,2	6.5	120
Delta Geminorum	Var, 6.1	4.5	110
Alpha Herculós			208
Delta Herculis	3.0,7.5	11	
Zeta Herculis	2.0,6.5		300
Gamma Leonis	2.6,3.8	4.3	121
Alpha Lyrae	0.0,10.5	60	180
Epsilon Lyrae	4.6,6.3	3	005
Zeta Lyrae	4.2,5.5	44	150
Beta Orionãs	0.1,6.7	9.5	205
Iota Orionis	3.2,7.3	11	140
Theta Orionis	6.0,7.0		
Sigma Orionis	4.0,8.0	11.1	236
Zeta Orionis	4.9,10.0	3	160
Eta Persei	4.0,5.0	8.5	300
Alpha Piscium	4.3.8.5	1.9	291
Alpha Scorpii	0.9.5.3	3	275
Nu Scorpii	4.2,6.9	42	336
Theta Serpentis	14.1,6.5	23	103
	0.8,4.1	130	032
Alpha Tauri	2.3, 11.2	14.5	150
Zeta Ursae Majoris			217
Alpha Ursae Minoris	2.0,4.2	18.3	
Gamma Virginis	3.6,9.0	4.8	305
Theta Virginis	4.0,3.7	7	340

Name	Origin	Bayer Name
lcamar	A	0 Eridani
lchernar	A	« Eridani
lerux	M	< Crucis
Adhara	AA	€ Canis Majoris
ldebaran	A	« Tauri
lloth	A	€ Ursa Majoris
Alkaid	A	9 Ursa Majoris
Al Na'ir	A	a Gruis
Alnilam	A	e Orionis
Alphard	A	≪ Hydrae
Alphecca	A	< Corona Borealis
Alpheratatz	A	\propto Andromeda
Altair	A	∝ Aquilae
Ankaa	A	∝ Phoenicis
Antares	G	∝ Scorpii
Arcturus	G	∝ Bootis
Atria	M	≪ Triangula Australi
Avior	M	E Carinae
Bellatrix	L) Orionis
Betelgeuse	A	< Orionis
Canopus	G	< Carinae
Capella	L	∝ Aurigae
Deneb	A	∝ Cygni
Denebola	A	8 Leonis
Diphda	A	2 Ceti
Dubhe	A	Vrsa Majoris
Elnath	A	f Tauri
Eltanin	A	y Draconis
Enif	A	E Pegasi
Fomalhaut	A	X Fiscis Austrini
Gacrux	M	Y Crucis
Glenah	A	Y Corvi
Hadar	M	ß Centauri
Hamal	A	<pre>✓ Arietis</pre>
Kaus Australis	A	6 Sagitarri
Kochab	A	f Ursa Minoris
Markab	A	
Menkar	A	× Ceti
Menkent	M	6 Centauri
Miaplacidus	A	β Carinae
Mirfak	A	« Persei
Nunki	B	o Sagitarrii
Peacock	M	C Pavonis
Polaris	L	« Ursa Minoris
Pollux	L	
Procyon	G	β Geminorum α Canis Mimoris

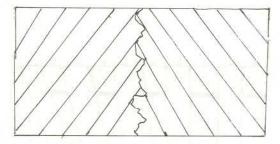
STARS, THE TWENTY BRIGHTEST


Star	Constellation	Apparent magni tude	Colour
Sirius	Canis Major	- 1.43	White
Canopus	Carina	- 0.73	Yellowish
a Centauri	Centaurus	- 0.27	Yellowish
Arcuturus	Bootes	- 0.06	Orange
Vega	Lyra	0.04	Bluish-White
Capella	Auriga	0.09	Yellowish
Rigel	Orion	0.15	Bluish-White
Procyon	Canis Minor	0.37	Reddish
Achernar	Eridanus	0.53	Bluish-White
Betelgeuse	Orion	Variable	Reddish
β Centauri	Centaurus	0,66	Bluish-White
Altair	Aquila	0.80	White
Aldebaran	Teurus	0.85	Orange
Acrux	Crux	0.87	Bluish-White
Antares	Scoppio	0.98	Reddish
Spica	Virgo	1.00	Bluish-White
Fonalhaut	Piscis Australis	1.16	White
Pollux	Gemini	1.16	Orange
Deneb	Cygnus	1.26	White
P Crucis	Crux	1.31	Bluish-White

STARS, THE TWENTY NEAREST

ı.	Sun	Distance (L.Y.) O	Brightness [@] 1.0	Colour Yellow
2.	a Centauri A	4,3	1.0	Yellow
₿.	a Centauri B	4.3	0,28	Orange
4.	a Centauri C (Proxima)	4.3	0.00005	Red
5.	Barnard's star	6.0	0.0004	Hed
6.	Wolf 359	7.3	0.000017	Red
7.	Luyten 726 - 8 A	7.9	0.00004	Red
8.	Luyten 726 - 8 B	7.9	0.00003	Red
9.	Lalande 21185	8,2	0,0048	Red
10.	Sirius A	8.7	23.0	White
11,	Siriud B	8.7	0.0008	Waite
12.	Ross 154	9.3	0.00036	Red
13	Ross 248	10.3	0.0001	Red
14.	e Eridani	10,8	0.25	Orange
15	. Ross 128	10.9	0.0003	Red
16	61 Cygni A	11.1	0.052	Orange
17	61 Cygni B	11.1	0.028	Orange
18	. Luyten 789 - 6	11.2	0.00012	Red
19	. Procyon A	11.3	5.8	White
20	Procyon B	11.3	0.00044	Red

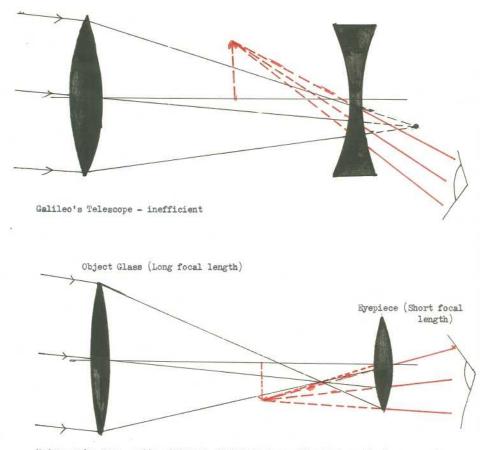
@ Sun = 1

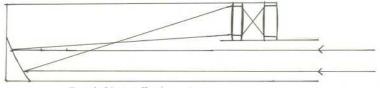

R Andromedae	0	22	38	18	6.1 - 14.9	409
W Andromedae	2	14	44	4	6.7 - 14.5	397
R Aquilae	19	4	8	9	5.7 - 12.0	300
R Arietis	2	13	24	50	7.5 - 13.7	189
R Aurigae	5	13	53	32	6.7 - 13.7	459
R Bootis	14	35	26	57	6.7 - 12.8	223
R Cassopeiae	23	56	51	6	5.5 - 13.0	431
T Cassopeiae	0	20	55	31	7.3 - 12.4	445
T Cephei	21	9	68	17	5.4 - 11.0	390
Omicron (Mira) Ceti	2	17	-3	12	2.0- 10.1	331
R Coronae Borealis	15	46	28	18	5.8 - 14.8	Irregular
W Coronae Borealis	16	36	37	55	7.8 - 14.3	238
R Cygni	19	35	50	5	6.5 - 14.2	426
U Cygni	20	18	47	44	6.7 - 11.4	465
W Cygni	21	34	45	9	5.0 - 7.6	131
SS Cygni	21	41	43	21	8.2 - 12.1	Irregular
Chi Cygni	19	49	32	47	3.3 - 14.2	407
R Draconis	16	32	66	52	6.9 - 13.0	246
R Geminorum	7	4	22	47	6.0 - 14.0	370
U Geminorum	7	52	22	8	8.8 - 14.4	Irregular
S Herculis	16	50	15	2	7.0 - 13.8	307
U Herculis	16	23	19	0	7.0 - 13.4	406
R Hydrae	13	27	-23	1	4.0 - 10.0	386
R Leonis	9	45	11	40	5.4 - 10.5	313
X Leonis	9	48	12	7	12.0- 15.1	Irrregular
R Leporis	4	57	-14	53	5.9 - 10.5	432
R Lyncis	6	57	55	24	7.2 - 14.0	379
W Lyrae	18	13	36	39	7.9 - 13.0	196
HR Delphini	20	40	18	58	3.6 - ?	Nova, 1967
Nova Vulpeculae	19	45	27	2	4.8 - ?	Nova, 1968
U Orionis	5	53	20	10	5.3 - 12.6	372
R Fegasi	23	4	10	16	7.1 - 13.8	378
S Persei ·	2	19	58	22	7.9 - 11.1	810
R Scuti	18	45	-5	46	5.0 - 8.4	144
R Serpentis	15	48	15	17	5.7 - 14.4	357
SU Tauri	5	46	19	3	9.2 - 16.0	Irregular
R Ursae Majoris	10	41	69	2	6.7 - 13.4	302
S Ursae Majoris	12	42	61	22	7.4 - 12.3	226
T Ursae Majoris	12	34	59	46	6.6 - 13.4	257
S Virginis	13	30	-6	56	6.3 - 13.2	380
R Vulpeculae	21	2	23	38	8.1 - 12.6	137

Picture A Picture B

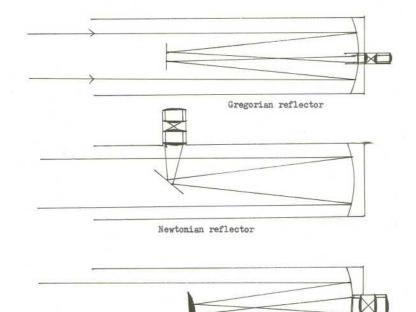
The two pictures apperar superimposed and thus 3 - dimensional.

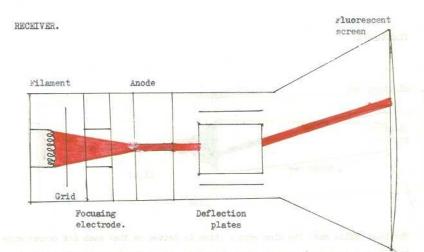
VECTOGRAPH


Two sheets of polaroid with their easy-axes marked an top of each other. Behind each sheet there is a picture on transparent film. Both pictures are of the same thing, but from different angles. The easy-axes of the polaroids are not at 90° otherwise the picture behind the second polaroid would never be visible.


Left eye

Right eye

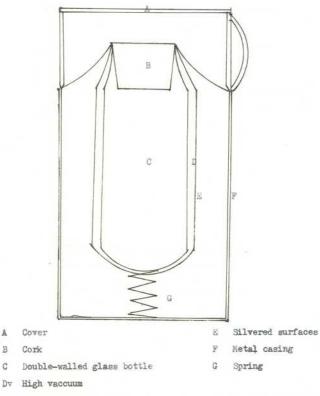

At 90° to the behind polaroid, so that ghe picture the back one is not visible to this eye. However, the picture behimd the front one is visible. At 90° to the front polaroid, so that only the picture behind the back one is visible.

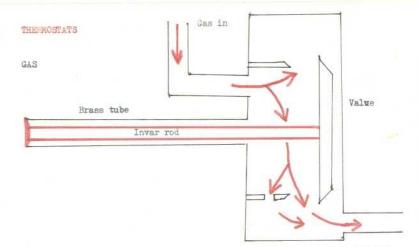

Modern refractor - quite efficient, but it is impossible for practical reasons to make for telescope, very large lenses. To re-invert the image in the astronomical refractor for terrestrial work, an auxiliary lens can be inserted at 2f from the image formed by the objective.

Herschelian reflector

Cassegrainian reflector.

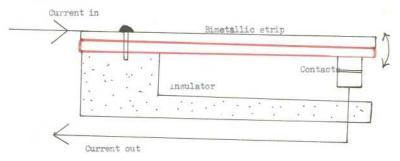
The filament produces a stream of electrons (called a cathode ray) which are attracted to the anode, and then race on through the deflection plates which, being of negative charge, deflect the now positive electrons. These plates deflect the rays so that it traverses the screen, which is made of a fluorescent material which gives off light when an electrical charge hits it, 405 or 625 times a second, thus leaving a bright trail. During each line, the intensity of the beam is varied to give light and dark, thus producing


Graph of the speed of the dot while traversing a line and returning to its starting point.


"招紹尚OS

В

C


The vaccum prevents heat coming to the contents of the bottle by convection or conduction, and the silvered surfaces by radiation.

Gas out

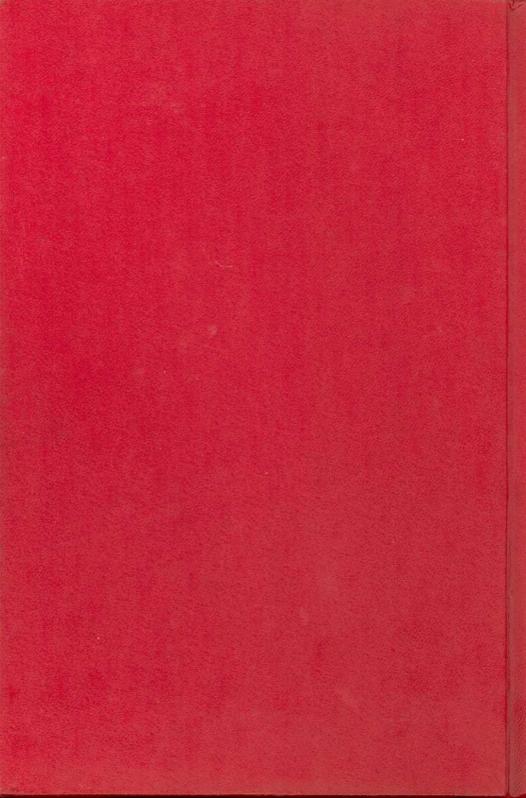
Invar is an alloy of steel which contains 36 % of bickel. It expands on $1/1000\ 0000$ of its length per degree Centigrade. When the brass tube expands it pushes its joiner to the invar bar to the left, and thus the invar bar pulls the valve closer so that the gas flow is reduced. The opposite happend when the temperature falls.

ELECTRICITY

At a certain temperature the bimetal bend so that the contacts break away from each other, and close when under that temperature.

UNIVERSE, Nature of

According to Euclidean geometry, the angles of a triangle add up to I80°, and the proof of this is perfectly valid. But, take a triangle drawn on the surface of a sphere, the shortest distance between two points on the surface of the sphere is curved. Thus we find that the angles of a triangle here add up to slightly more than I80°. This was proved in I823 by a man called Gauss who used surveying equipment to measure the triangle made by Brocken, Hohehagen, and Inselberg in Germany. The longest side in the triangle is about I60 kms.. He measured the interior angles


86[°]13'58.366" 53[°]64'5.642"

as:

40°39'30.165"

180 00'14.173"

He realized that if space was curved, then the three angles of a triangle taken on a much larger scale, would total much more than I80°. The question is: How do you mea-ure distances in space when we are stuck within our solar system? When Pluto's orbit was predicted, using its effect gravitation-wise on other planets, the error was found to be small. If the radius of curvature of the universe was small, then a significant error would have been discovered. As there was almost no error, it is certain that the radius of curvature of the universe is not less than 5 x 10¹⁷ cms... Another method of proving t e curvature of space was suggested by Schwarzschild. This was called the trigonometrical parallax. In this method, observations of a star were taken 6 months apart. The angle made between the line joining Earth to the Sun and Earth to the distant star were measured at each time. We will call these two angles a and b. On a flat sur ace, or, in this case, in flat space, a plus b is less than 180. So far as we know, this is true out until the limits of our present observations. at 3 x 10²⁰ cms.. Therefore, we might conclude that the radius of curvature of the universe was bigger than this, which is not neccessarily true, because some of our measures of distance, assume that space is flat. But, by triangulation. we know that the radius of the universe must be greater than 10²⁸ cms.. With this distance is accosiated the charecteristic LENGTH of the universe, but is this the radius of the radius of curvature of the universe ? This is one of the major problems confronare many theories of the universe, but all have one thing in common, they all accept the fact that the universe is expanding at a considerable rate. The proof of this comes in the doppler effect, which is discussed in another chapter. However, there is one possible paradox. That is that the galaxies all seem to be moving away from our galaxy, which is obviously untrue. What is obviously happening is that the distances between the galaxies are being increased, making it look as if all the galaxies are going away from us. The nearer galaxies are receding slowly, but the most distant ones which we have seen are receding at speeds of up to $\frac{1}{2}$ the velocity of light. There are two main theories of the universe which are worth discussing: The Big Bang, or Superdense theory, and the Solid State theory. The Superdense or Big Bang theory postulates that there was an original single Superdense mass of energy and matter, which exploded. Thus the galaxies are fragment of this original 'bomb' and are flying outwards at a high speed. The fact that the universe is expanding means that its radius is also doing so. The other theory is the Solid State theory. This postulates that the universe started to expand with very little matter in it except hydrogen, but that as gaps are left by receding galaxies, these are filled in and the hydrogen fusions to produce all the other elements we know of. This would explain the fact that hydrogen is by far the most abundant element in the universe. Now I must explain the death of the universe. The expansion which we detect must come to an end when the first galaxies recedes at the velocity of light. because this speed is unachievable. We have good reason to believe that the speed of recession is increasing as time goes on, so this point must finally come. The other 'fying' factor in the universe is that all energy finally unwinds itself down to heat, so it is thought that eventually, this may be the only form of energy in the universe.

