CONCISE DHIECIORY OF puysics

Stuphen Woltram

 43
4
4
 Wollram
$5(2)$ (4)

Graph of relative abundances of elements in the solar system, and probably in the universe. These were discovered, in the case of the lighter elements, using the Sun's spectra, and with the heavier ones, meteorites.

The 8 most common elements in the Earth's oceans, atmosphere, and uppermost 10 miles of curst.:

Oxygen	62.6%
silicon	21.2%
Aluminium	6.5%
Sodium	2.64%

Hore increased velocity airflow

According to hydrodynamics, the sum of energies of velocity and pressure, and the potential energy of elevation remain constant. as the energy of an air pass is the sum of its velocity and pressure, it follows that if theie is an increase in velocity, the pressure falls and vice-versa. as the distance over the top of an aerofoil is greater than that under the bottom, and the two airflow reach the end of the aerofoil at the same time, it follows that the upper one has more velocity and less pressure, and the lower one less velocity and more pressure. The differential has a lifting effect ou the body and is called 'lift'. Where the air meets behind the aerofoil, there is a higher pressure, due to the two streams hitting each other. This tends to pugh the aerofoil forward. At the front, however, as air hits the aerofoil, the aerofoil is retatded slightly. The high velocity of airflow under the wing helps to keep the wing or aerofoil up as vell.

Generation:

Iternating current changes its direction of flow at a fixed rate. The most common type used is that from the mains, which is reversed 120 times a second, thus it has a frequency of $60 \mathrm{c} . \mathrm{p} . \mathrm{s}$. . The cheif advantage which alternating current has over direct current is that its voltage can be changed much more easily. A.C. is gemerated by an alternator, which, in its simplest form is a wire or coil rotating in an electric field between two opposing poles of a magnet. The current is dram by means of two slip rings which are brushed by copper brushes from the coil.

ASTIEROIDS.

List of important asteroids:

Pirst twenty discovered:

Number	Name	Distance from Sun (mean A.U)
1	Ceres	2.8
2	Pallas	2.8
3	Juno	2.7
4	Vesta	2.4
5	Astraea	2.6
6	Hebe	2.4
7	Iris	2.4
8	Flora	2.2
9	Metis	2.4
10	Hygiea	3.1
11	Parthenope	2.4
12	Victoria	2.3
13	Egeria	8.6
14	1 rene	2.6
15	isunomia	2.6
16	Psyche	2.9
17	Thetis	2.5
18	Melpomene	2.3 .
19	Fortuna	2.4
20	Massilia	2.4

Close asteroids:

433	Bros	1.5
1566	Icarus	1.1
1620	Geographos	1.2
	Apollo	1.5
	Hermes	1.3

a, R.A.	Right Ascension
δ, Deg.	Declination
E, A	Azimuth
h	Al titude
z	Zenith distance
λ	Celestial longitude
β	Celestial latitude
G	Galactic longitude
g	Galactio latitude
ϕ	Polar distance
θ	Sidereal time
h	Hour
m	Minute
s	Second
P	Position angle
d	Distance in seconds of arc
μ	Proper motion
π	Parrallax in seconds of arc
ϵ	Obliquity of the ecliptic
t	Hour angle
ORBIT DETERMINATION	
k	Constant of gravitation
mi	Planet's mass to Sun's mass
T	Time of perihelion passage
E	Epoch
ω	Angular distance from ascending node to perihelion
Ω	Longditude of ascending node
π	Longitude of perihelion point
1	Inclination of the eclipstic
e	Eecentricity of the orbit

σ	Conjuction
\square	Suadrature
8	Opposition
Ω	Ascending node
U	Descending node

CONSHETLAATIONS OF THE ZODIAC

γ	Aries
γ	Taurus
\boldsymbol{I}	Gemini
$\frac{\sigma_{0}}{\Omega}$	Cancer
Leo	

M	Virgo
Ω	Libra
M	Scorpius
7	Sagitarius
M	Capricornus
M	Aquarius
Pisces	

| Composition: | (average at sea-level) |
| :--- | :--- | :--- |
| Nitrogen | 78.08% |
| Uxygen | 20.95% |
| Argon | 0.93% |
| Carbon Dioxide | $0.0 \% \%$ |
| Neon | 0.0018% |
| Helium | 0.0005% |
| Krypton | 0.0001% |
| Xenon | 0.00001% |
| Plus small very variable amounts of: | |
| Water vapour | |
| Hydrogen peroxide | |
| Hydrocarbons | |
| Sulphur compounds | |
| Dust particles | |

Height: KM	Teperature: K
0.000	288.15
11.019	216.65
20.063	216.65
32.162	228.65
47.350	270.65
52.429	276.65
61.591	252.65
79.994	180.65
90	180.65
100	210.02
110	257.00
120	349.49

(The second numberfis the power of ten Pressure:

mB

lu. $1325 \quad 2$
$2.2632 \quad 2$
$5.4774 \quad 1$
8.67980
$1.1090 \quad 0$
5.8997 -1
1.8209 -1
1.0576 -2
$1.6437-3$
3.0070 -4
$7.3527-5$
$2.5209-6$

BAROMETERS

In the mercury barometer, a tube isv filled up with mercury, and then inverted into a bath of mercury. This causes a vaccuur at the top of the tube, so the mercury rises according to how much atmospheric pressure there is on the bath.

VOL,taic

STMPLE CEHL

The disadvantage of this type of cell is that the Hydrogen gas does not conduct and thus, when there is a lot of electrolysis, the cell fails to work so efficiemtly. This is called podarization.

KEY:

A Manganese dioxide and powdered carbon
B Carbon rod (positive)
C Muslim bag
D Paste of Ammonium chloride
B Zinc (negative)
F Case
G Vent

KEY:

A NEgative electrodes (Cadmium)
B Separators
C Positive electrodes (silver)
D Plastic casing
E Electrolyte

Other kinds of accumulator include:
Nickel - Iron (NiPe) Erectrolyte - 20% Potassium hydroxide
Zinc - air Electrolyte - 20% Potessium hydroxide
Sodium - Sulphur
Lithium - Chlorine ()
(10) these accumulators need an operating temperature of $300-600{ }^{\circ} \mathrm{C}$

BEL.

Increase in decibels	Increase facter
1	1.26
2	1.58
3	2.0
4	2.51
5	3.16
6	3.98
7	5.2
8	6.3
9	7.95
IO	10
DECIBELS	
165	Saturn V launching pad at lift-off
160	Jet engines wide open
150	$50-\mathrm{hp}$ siren at 100 ft .
140	nir raid siren at 20 ft .
130	Pneumatic chipper at 5 ft .
120	Shotgun blest
110	Annealing furnace at 4 ft .
100	Passing train at 500 ft .
90	Conversational speecg at 3 ft .
80	Office with typewriters.
70	Light city traffic at IOO ft.
40	Average living room
30	Broadcasting studio
20	Very quiet room.

BINOCULARS, PRI SMI

Prisq binoculars are ingenious because they allow the objertive to have a long focal length without the binoculars having to be very long in tube length. They also produce an erect and laterally correct image. Prism A corrects the Vertical inversion from the objective, and prism B corrects the Lateral inversion.

BINOCULARS, TYPES OF PRISK

The nickel strips resistance varies with temperature, and so do the phosphor bronze support wires. Thus, the amount of heat falling on the bolometer can be deduced.

Graph of $\Delta(A, z) c^{2} / A$
It is reasonable to say that the binding energy between the parts of a nucleus is about 8 MeV .

DIATOMIC MOLECULES, .
$\left.\begin{array}{lll}\text { Molecule } & \begin{array}{l}\text { Distance between } \\ \text { nuclei }\end{array} & \begin{array}{l}\text { Energy } \\ \text { atoms }\end{array} \\ \text { needed to separate } \\ \text { (dissociation energy) }\end{array}\right\}$

BULB, BLBCTRICAL

SINGLE CONDUCTOR

TWIN CONDUCIORS

Cotton braid

The light primaries work by addition, e.g. the three primaries make white, whereas the pigment primaries work by subtraction. If you have a red piece of paper, then it absorbs all light except red. Thus, it is obvious why the pigment primaries are complementaries to the light primaries.

Light mixing.
RESISTORS.

2. Red
3. Orange
4. Yellow
5. Green
6. Blue
7. Violet
8. Grey
9. White
(a) The colour on the body of the resistor stands for the first figureof the ohms, thestip stands for the second digit, and a band or dotstands for the number of 0 's th follow.
(b) The furthest left band represents the first digit, the next band the second digit, the third the number of 0 ' s and the forth the tolerance. For this two coloyrs are used: gold 5\% tolerance
silver 20\% tolerance
nothing. 10\% tolerance
CONDENSERS.
Tolerance Voltage rating
1% 100. Brown
2% . 200 Red
3% 300. Orange
4%. 400. Yellow
5%. .500 Green

WANDER PLUGS.
Red. Highest positive $H T$
Yellow 2nd highest positive HT
Green. 3ra highest positive HT
Blue. .4 th highest positive HT
Pink IT positive
Black .Common negative
Brown. .Maximum negative, GB
Grey 2nd negative GB
White. 3rd negative GB
PLUGS.
Brown Live
Yellow/Grenn. Earth
Blue. Negative
E
N
LProng configuration.

Susceptance	B	Siemens	S	$B=1 / X$ (one)	
Admittance	Y	Siemens	S	$Y=1 / Z$ (one)	
Total voltamperes	S	Voltamp	VA	$S^{2}=P^{2} \quad Q^{2}$	
Reactive voltamperes	Q		VA r		
Luminous flux	ϕ	Lumen	$1 m$	$I m=c d$ sr	
Illumination	B	Lux	$l x$	$I x=I m m^{2}$	

CONIC SECTIONS

El ectronic charge	1.60210×10^{-19} couloumb	e
Electronic rest mass	9.1091×10^{-31} kilogram	$\mathrm{m}_{\text {e }}$
Electronic radius	2.81777×10^{-15} metre	e
Proton rest mass	1.67252×10^{-27} kilogram	p
Neutron rest mass	1.67482×10^{-27} kilogram	
Planck's constant	6.62559×10^{-34} joule second	h
Velocity of lighy	2.997925×10^{8} metres per second	c
Avogadro's constant	6.02252×10^{23} per molve	L
Loschmidt's constant	$2.68719 \times 10^{25} \mathrm{~m}^{-3}$	N_{1}
Gas constant	$8.3143 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	R
Boltzmann's constant	$1.30854 \times 10^{-23} \mathrm{JK}^{-1}$	k
Faraday's constant	$9.64870 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$	F
Stefan - Boltzmann constant	$5.6697 \times 10^{-8} \mathrm{WM}^{-2} \mathrm{~K}^{4}$	σ
Gravitational constant	$6.670 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{Kg}^{-2}$	G
Accelearation due to gravity	$9.80665 \times 10^{0} \mathrm{~m} \mathrm{~s}^{-2}$	g
Permeability of a yaçuum	$4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$	μ_{0}
Permittivity of a vaccum	$8.85418 \times 10^{-12} \mathrm{Fm}^{-1}$	ϵ_{0}

	Abbreviation	Pight	Declination
Andromeds	And	$\begin{gathered} \text { Ascension } \\ 1 \end{gathered}$	40 N
Antlia	Ant	10	35 s
Apus	Aps	16	75 S
Aquarius	Aqr	25	15 S
Aquila	Aq1	20	518
Ara	Ara	17	55 S
Aries	Ari	3	20 N
Auriga	Aur	6	40 N
Bootes	Boo	15	30 置
Caelum	Cae	5	40 S
Camelopardus	Cam	6	70 s
Cancer	Cnc	9	20 N
Canes Venatici	CV n	13	40 N
Canis Major	CHa	7	20 S
Canis Minor	Cai	8	5 N
Capricornus	Cap	21	20.8
Carina	Car	9	60 s
Cassiopeia	Cas	1	60 N
Centaurus	Cen	13	50 S
Cepheus	Cep	22	70 N
Cetus	Cet	2	10 S
Chamaeleon	Cha	11	80 S
Circinus	Cir	15	60 S
Columba	Col	6	35 s
Coma Berenices	Com	13	20 Nr
Corona Austrina	Cra	19	40 S
Corona Borealis	CrB	16	30 N
Corvus	Crv	12	20.5
Crater	Crt	11	15 S
Crux	Cru	12	60 S
Cygnus	Cyg	21	40 N
Delphinus	Del	21	10 N
Dorado	Dor	5	65 S
Draco	Dra	17	65 N
Equuleus	Equ	21	10 N
Eridanus	Eri	3.	20 s
Fornax	For	3	30 S
Gemini	Gem	7	20 N
Grus	Gru	22	45 S
Hercules	Her	17	30 N
Horologium	Hor	3	60 S
Hyara	Hya	10	20 S
Eydrus	Hyi	2	75 S
Indus	Ind	21	55 S
Lacerta	Lac	22	45 N
Leo	Leo	11	15 N

CONVERSIONS, 6-FIGURE

LENGTH:

	m	cm	in	ft
1 metre	1	100	39.3701	3.28084
1 centimetre	0.01	1	0.393701	0.0328084
1 inch	0.0254	2.54	1	0.0833333
1 foot	0.3048	30.48	12	1

	km	mi	n.mi
1 kilometre	1	0.621371	0.539957
1 mil	1.60934	1	0.868976
1 nautical mi.	1.8520	1.15078	1

1 light yeaz $=9.46070 \times 10^{15}$ metres $=5.87848 \times 10^{12}$ miles
1 astronomical unit $=1.495 \times 10^{11}$ metres
1 parsec $=3.0857 \times 10^{16}$ metres $=3.2616$ light years

VELOCITY:

	$\mathrm{m} / \mathrm{sec}$	$\mathrm{km} / \mathrm{hr}$	$\mathrm{mi} / \mathrm{hr}$	$\mathrm{ft} / \mathrm{sec}$
1 metre/second	1	3.6	2.23694	3.28084
1 kilometre $/ \mathrm{hr}$.	0.27778	1	0.621371	0.911346
1 m.p.h.	0.44704	1.609344	1	1.46667
$1 \mathrm{ft} / \mathrm{sec}$.	0.30480	1.09728	0.681817	1

MASS:

	kg	g	.1 b.	lomg ton
1 kilogram	1	1000	2.20462	984207×10^{-9}
1 gram	0.001	1	$220462 \times 10^{-8} \quad 984207 \times 10^{-12}$	
1 pound	0.453592	453.592	1	4.46429
1 long ton	1016.047	1016047	2240	1

Photographic plate

Planes of atoms

SODIUM CHLORIDE

- Cl^{-}
Na^{+}
Shape : Cubic (Face - centered)
Type : Covalent (Molecular)

GRAPHITE

Shape : Heikagonal prism
lype : Atomic

Cesium Chloride (Body centered)
Shape : Cubic
Type : Covalent

DECAYS, RADIOACTIVE
Tl Bi At Fr Ac $\mathrm{Pa} \quad \mathrm{Np}$ Am Bk Es

DINSITY.

-	$\mathrm{gm} / \mathrm{cc}$
Atomic nuclei	10^{14}
Center of densest stars	10^{5}
24 - carat gold	19.3
Mercury	13.6
Barth's Nickel-Iton core	(4) 12
Lead	11.3
Stelal	7.6-7.8
Titanium	4.5
Diamond	3.53
Aluminium	2.70
Quartz	2.65
Lucite	$1.16-1.20$
Human body (average)	1.07
Water	1
Ice	0.917
Buttter	0.87
Cork	0.24
Liquid hydrogen	0.071
Room atr	1.2×10^{-3}
Air at 20 kms	$9 \times I C^{-5}$
Interstellar space	10^{-21}
Intergalactic space	10^{-24}

Wave crests
continued linear crests ricctilinear propagation.

This occurs when the slit is in the region of the wavelength of the the waves. As the wave tries to push through the hole it is 'bent'. This accounts for sound being heard 'round a corner'.

```
DOPPLEREFEFECT.
```

ETEGTROMACNETIC WAVES

SOUND

ELECTRON CONFIGURATIONS AND IONIZATION POTENIIALS OF THE COMMONER ELEMENTS
irionization potentials (Electron Volts)

Element	At. No	K	L	M	N	0	P	I	II	III	IV	V
H	1	1						13.59				
He	2	2						24.48				
C	6	2	4					11.26	24.38	47.87	64.48	392.0
N	7	2	5					14.53	29.59	47.43	77.45	97.86
0	8	2	6					13.61	32.11	54.89	77.39	113.9
F	9	2	$?$					7.87	16,18	30.64	56.80	114.2
Ne	10	2	8					21.56	41.07	63.50	97.02	126.3
Na	11	2	8	1				5.14	47.29	71.71	98.88	138.4
Mg	12	2	8	2				7.64	15.03	80.14	109.29	141.2
A 1	13	2	8	3				5.98	18.82	28.44	119.96	153.8
Si	14	2	8	4				8.15	16.34	33.49	45.13	166.7
P	15	2	8	5				10.48	19.72	30.16	51.35	65.0
S	16	2	8	6				10.36	23.40	35.0	47.29	72.5
Cl	17	2	8	7				13.01	23.80	39.9	53.50	67.8
Ar	18	2	8	8				15.75	27.62	40.9.	59.8	75,0
K	19	2	8	8	1			4.34	31.81	46.0	60.9	82.6
Ca	20	2	8	8	2			6.11	11.87	51.2	67.0	84.4
Fe	26	2	8	14	2			7.87	16.8	30.6	56.8	-
Cu	29	2	8	18	1			7.72	20.30	36.8	-	-
Zn	30	2	8	18	2			9.39	17.96	39.7	-	\cdots
Br	35	2	8	18	?			11.84	21.60	35.9	47.3	59.7
Kr	36	2	8	18	8			13.99	24.90	36.9	43.5	63.0
Ag	47	2	8	18	18	1		7.57	21.5	34.8		
Sn	50	2	8	18	18	4		7.34	14.63	30.5	40.7	72.3
I	53	2	8	18	18	$?$		10.45	19.13	30.	-	-
Xe	54	2	8	18	18	8		12.13	21.2	31.3	42.0	53.0
Cs	55	2	8	18	18	8	1	3.89	25.1	35.0	-	
Ba	56	2	8	18	18	8	2	5.21	10.0	35.5	-	-
Hg	80	2	8	18	32	18	2	10.43	18.75	34.2	49.5	-

N.B. The nearest sheal to the nucleus is K and then L, and so on.

The reflected beam of electrons is then put through a series of magnetic lenses which serve to spread it out up to a magnification of $I 00,000 \mathrm{X}$, and the stream of electrons fall on a fluorescent screen which produces a image. The reflected X-Rays can be used spectroscopically to determine the constituents of the specimin. One of the advantages of an electron microscope is that it has a field of view and depth of view 300 times better than a light microscope.

$\frac{\text { Particle }}{\text { PSRMIONS }}$| Symbol |
| :--- |
| BAYON |$\quad \frac{\text { Mass }}{(\mathrm{MeV})} \quad$ Soin $\frac{\text { Lifetime }}{\text { (secs) }} \quad$ Charge \quad Strangeness

NUCLIEONS

Proton	p	938.26	$\frac{1}{2}$	Stable	1	0
Neutron	n	939.55	$\frac{1}{2}$	IOIO	0	0

HYPERONS

Xi-particles \quad -	I3I4.9	$\frac{1}{2}$	2.9×10^{-10}	0	-2
三-	1321. 3	$\frac{1}{2}$	1.7×10^{-10}	-I	-2
Sigma particles Σ^{+}	II89.5	$\frac{1}{2}$	3.1×10^{-11}	I	-I
Σ°	II92.5	$\frac{1}{2}$	10^{-14}	c	-I
Σ	II97.4	$\frac{1}{2}$	1.66×10^{-10}	-I	-I

Lambda-particle $\wedge \quad$ III5.5 $\frac{1}{2} \quad 2.5 \times 10^{-10} \quad 0 \quad-I$
Omega-particle $\Omega^{-} \quad 1672$ 1六 \quad I.I $\times 10^{-I O} \quad-I \quad$ I LIEPTONS

Blectron	e^{-}	$0.5 I I$	$\frac{1}{2}$	Stable	$-I$	0
Neutrino	Y	0	$\frac{1}{2}$	Stable	0	0
Muon	μ^{-}	$I 05.66$	$\frac{1}{2}$	$2.2 \times I 0^{-6}$	$-I$	0

BOSONS
MESONS

Sta-particle	η^{*}	548.8	0	?	0	0
Kaons	K*	497.8	0	10^{-10}	0	-I
	K^{-}	493.8	0	I. 2×10^{-8}	-I	-I
	K^{+}	493.8	0	1.2×10^{-8}	I	I
Pions	π^{+}	139.6	0	2.6×10^{-8}	I	0
	π°	135	0	10^{-16}	0	0
	π^{-}	I39.6	0	2.6×10^{-8}	-I	co
Photon	y	0	I	Stable	0	-

ELEMENTARY PARTICLES

Name:	Symbol:	At. No.:	A. W\%:
Actinium	Ac	89	(227)
Aluminium	Al	13	26.9815
Americiam	Am	95	(243)
Antimony	Sb	51	121.75
Argon	Ar	18	39.948
Arsenic	As	33	- 74.9216
Astatine	At	85	- (210)
Bariun	Ba	56	137.34
Bericelium	Ex	97	(247)
Beryllium	Be	4	9.0122
Bismuth	Bi	83	208.98
Boron	B	5	10.81
Bromine	Br	35	79.904
Cadmium	Cd	48	112.40
Caesium	Cs	55	132.905
Calcium	Ca	20	40.68
Californium	Cf	98	(251)
Carbon	C	6	-12.0II
Cerium	Ce	58	- 140.12
Chlorine	Cl	17	35.453
Chromium	Cr	24	51.996
Cobalt	Co	27	58.9332
Copper	Cu	29	63.546
Curium	Cm	96	(247)
Dysprosium	Dy	66	162.50
Einsteinium	Bs	99	(254)
Erbium	Er	68	167.26
Europium	En	63	151.96
Fermium	FIn	100	(257)
Fluorine	F	9	18.9984
Francium	Fr	87	(223)
Gadolium	Gd	64	157.25
Gallium	Ga	31	(u) 69.72
Germanium	Ge	32	72.59
Gold	Au	79	196.967
Hafnium	Hf	72	178.49
Helium	He	2	4.0026
Holmium	Ho	67	164.930
Hydrugen	H	1	1.00797
Indium	In	49	114.82
Iodine	I	53	126.9044
Iridium	Ir	776	192.2
Iron	Fe	26	55.847
Krypton	Kr	36	83.80

Titanium	Ti	22	47.90
Tungsten (Wolfram)	W	74	183.85
Uranium	U	92	238.03
Vanadium	V	23	50.942
Xenon	Xe	$5 \neq$	131.30
Ytterbium	Yb	70	173.04
Yttrium	Y	39	88.905
Zinc	Zn	30	65.37
Zirconium	Zr	40	91.22

In the Atomic Weights, 1 equals $1 / 12$ of the weight of Carbon isotope I2.

ENERGY.
There are seven forms of energy: Kinetic, Potential, Heat, Electrical, Chemical, Radiant, and Atomic. Out of these, only one can exist on its own in space: Radiant energy. All the others need some sort of medium, or come from matter itself, like Atomic energy. Energy is described as the ability to do work. In the natural world, except for a few cases where matter is turned into energy and vice-versa, no energy can be destroyed or created in the universe. Thus we arrive at the law of the conservation of energy . This law states that whatever energy transfers take place, no energy can ever be lost. We will now take an example of an energy chain. We will start at the sun which is 'Driven' by atomie energy. The exact method will be discussed later, this produces radiant energy in the form of light and heat. This light then falls onto a photoelectric cell which converts it into electrical energy. This electrical energy is then used to blectrolise a chemical solution turning its chemical energy into heat. Thus we have used up all the types of energy known. Nearly all the energy on this earth originates from the sun e.g. fossilised fuels etc., but a very small amount e.g. volcanoes originate from the earth itself. It is possible to convert any given type of energy to any other except for a very few combinations . These include radiant to lanetic and atomic to kinetic and electrical . There is another type of energy inherent in the very structure of the universe as we know it at present. This is a store of energy which has not yet been tapped by man. It exists as the combination between matter and anti-matter. When an atom and an anti-atom meet a considerable amount of energy is produced, a radiation called annihilation radiation and total annihilation of both particles takes place. This is the only time when $e=m c^{2}$ is truly valid. Before going into the different types of energy it is worthy saying that, as we go on, all the energy in this universe is gradually being turned into heat which then diffuses into the cosmos. This entropy is called the heat death of the universe, and is discussed from another angle in another article. We will start with heat energy . This energy comes in the form of the kinetic energy of molecules in a substance. The more they move around, the more heat energy the substance is said to have. There are three methods by which heat can be transferred between two things, n.b. it is impossible in nature for heat to be transferred between a cold body which already has the heat and a hot body .

FOOD , CALORIFIC VALUES OF

PROTEINS

Cheese 1680
Lean meat 1200
Eggs 700
Liver 600
White fish 300

CARBOHYDRATES

Chocolate 2300
Sugar 1600
Wholemeal bread 1000

FATS

Butter 2900
Margarine 2900
Olive oil 2900
Fat meat 2900

OTHERS

Peas 420
Boiled potatoes 340
Milk 300
Fresh fruit 200
Green vedgetables 150

The low pressure gas is usually Argon, with a touch of Alcobol vapour in. The pressure is maintained at about 5 mm . Hg.. When an alpha, beta, or gama particle passes between the anode and the cathode, positive ions and electrons are produced in equal numbers. The potential differance between the anode and the cathode beigg very high (IOOO volts), the electrons quickly collect on the anode wire, causing an electrical pulse which is amplified and then displayed visually or aurally. The positive ions slowly diffuse onto the cathode.

$\log _{1 u}$ secs.

Key:	
11	Theoretical curve
2	Thenretical curve
3	Th ${ }_{238}$
4	${ }^{1} 238$
5	U 236
6	Th^{233}
7	U. 234
8	Fu_{240}
9	Pu^{246}
10	Ra_{238}
11	Pu_{232}
12	$\checkmark 244$
13	Cm_{25}
14	$\mathrm{Cf}_{6} 252$

Bnergy in KeV
(Kinetic energy) \qquad

16	com^{242}	32	
17	cf 208	33	
18	FO_{210}^{208}	34	${ }^{2} 254$
19	${ }^{\mathrm{PO}} 228$	35	${ }^{2} 218$
20	Th 236	36	in 218
21	Pu^{236}	37	O 215
22	Cm^{240}	38	0214
23	Po 206	39	t^{215}
24	in ${ }^{222}$	40	${ }^{212}$
25	Cf ${ }^{246}$		
26	Po 204		
27	Rn^{210}		
28	Bi^{212}		
29	Rn^{208}		
30	Po 218		
31	Rn^{220}		

When the reflector is placed at the crest or through of the wave, the resultant reflected wave is coincident with the original, thus doubling the amplitude. this is called CONSTRTCIVE INTERFERENCE.

reflector
If the reflector is half-way between the crest and trough of the wave, then the crest of the reflected wave is co-incident with the trough of the original and viee-versa, thus meaning that the two waves cancell each other out, leaving nothing, This is called DESTRUCTIVE INTERFBRFNCE.

The A on each digram represents the anti-node, and the A tije node. The node is the point at which the three waves meet, and the antinode is the point where they are fathest apart.

Lloyd's mirror. Interference using a reflector.

This is a practical method of demonstrating the two source interference pattern.

Ionization potential means the energy needed to free one electron from the nucleus.

KLLVIN.

```
    Log Scale
    10
    Interior of hottest stars.
    Hydrogen Bomb
    Sun's interior
    Sun's corona
    Atomic bimb
    All mdlecules break down into atoms
    Tungsten lamp filament
    Lava
    SER OVER
    Lowest weather reading
    Surface of Pluto
    Helium Bdils
    Helium freezes under pressure
```


The Kerr effect is that, when polarized light passes through a medium like nitrobenzene to which a high potential differance is applaed, the direction of polarization is changed. Thus if there is a large potential differance in the liquid, the direction of polarization is rotated so that it is impossible for it to get through a second polarizer. This effert occurs in times of doen to 10^{-8} sevonds. Thus it is used for hogh speed shutters and as a means of modulating a LASER beam.

Pincushion-shaped distortion.

Barell-shaped distortion.

LENS ASTIGMATISK.

LENS PORMTL

$\frac{h_{i}}{h_{i i}}$ equels $\frac{\hat{i}}{(v-f)}$
$\frac{h_{i}}{h_{i i}}$ equals $\frac{u}{v}$
$\frac{1}{u}$ plus $\frac{I}{v}$ equals $\frac{I}{f}$

LENSES, TYPES OF

The solid angle of space surrounding a given is 4 units, thus one unit is about 8% (exactly 7.963%). The luminous intensity of a light source is described as the luminous flux (flow) emitted per unit solid angle, or the luminous energy emitted per unit solid angle per second. However, experiment shows that the amount of energy produced by a filament is not equal all over a sphere, but depends on the dirextion of the filament. The unit of light intensity is the Candela (cd). This is described as the lminous intensity of liquid platinum under certain conditions. A 60 - watt bulb has a mean luminous intensity of about 50 cd . The luminous effeciency of a light source is described as lumens per watt. A lumen is the luminous flux emitted by a source of 1 cd in 1 unit solid angle. An 100 W tungsten (Wolfram) filament lamp has a luminous effeciency of 15 lumens per watt. The intensity of illumination of a surface is described as the luminous flux per unit area incident on it. Luminous intensity refers to a source, illumination to a receiving body. The lux is the illumination around a point P on a surface when a light of 1 cd is 1 metre from the point P in a perpendicular direction. A minimum illumination of 150 lux for libriares, 300 for offices, and 3000 for industry using micro-components, is recomended. Illumination E equals Luninous intensity I over distance d squared.

$$
E=\frac{I}{d^{2}}
$$

Measurements of:

Date	Author	Method	Result (km / s)	Error (plug or ${ }_{\text {minus }}$
1676	Roemer	Jupiter's setellites	214000	
1726	Bradley	Aberration of stars	301000	
1849	Fizeau	Toothed wheel	315000	
1862	Foucault	Rotating mirror	298000	500
1872	Cornu	Toothed wheel	298500	900
1874	Cornu	Deflection of light	300400	800
1878	kichaelson	Deflection of light	\$00140	700
1879	Michaelson	Deflection of light	299910	50
1882	Newcomb	Deflection of light	299810	30
1882	Wichaelson	Deflection of light	299853	60
1908	Perrotin	Toothed wheel	299901	84
1908	Rosa	Ratio of units	299788	30
1923	Merciar	Lecher wires	299795	30
1924	Michaelson	Rotating mirror	299802	30
1926	Michael eon	Rotating mirror	299796	4
1928	karolus	Keer cell	299778	20
1935	Wichaelson	Rotating mirror	299774	11
1937	Anderson	Kerr cell	299771	12
1940	Huttel	Kerr cell	299768	10
I94I	Anderson	Kerr cell	299776	14

From an average of relaible results, the velocity of light (c) is now held to be: $29979250000 \mathrm{cms} / \mathrm{sec}$.
Thus, in one year light travels: 945425628000000000 cms
Light travels 887544.0 O2654 times as fast as sound.
Light from the Sun takes 496.333304 secs or 8,272388 mins to reach Barth.
Light from the moon takes 0.948656 secs to reach Barth.

Advance line of apsides, (mean) period $=8.8503$ years; annual change $=40^{\circ} .677$ Albedo, average $=0.07$

Average length of months: Synodic 29.530588 days
Sidereal $\quad 27.321661$ days
Anomalistic 27.554550 day 5
Tropical 27.321582 days
Nodical 27.212220 days
Circumference $=10930 \mathrm{kms}=6790$ miles; one degree $=30.38 \mathrm{kms}=18.86$ miles
Diameter $($ mean $)=3476 \mathrm{kms}=2160$ miles; angular diameter $($ mean $)=31^{\prime} 07^{\prime \prime}$
Distance : Mean $384000 \mathrm{kms}=239000$ miles $=60.3$ earth radii
Min $357000 \mathrm{kms}=222000$ miles
Max 407000 kms $=253000$ miles
Fraction of surface always visible: $=41 \%$; sometimes visible 18%
Inclination of moon's equator to ecliptic $=1^{\circ} 35^{\prime}$
Inclination of orbit plane to earth's equator : $\max =28^{\circ} 35^{\prime}, \min =18^{\circ} 19^{\prime}$
Librations : maximum in latitude, each direction $=6^{\circ} 50^{\prime}$
maximum in longditude, each direction $=7^{\circ} 54^{\prime}$
Magnitude of full moon $=-12.5$
Mass $=7.32 \times 10^{25}$ grams $=8.0 \times 10^{19}$ tons $=0.01226$ of Earth's mass
Maximum orientation of lunar axis to rotation $=24.4^{\circ}$ in each direction
Mean eccentricity of orbit $=0.0549$
Mean parallax $=57^{\prime} 02^{\prime \prime} .54$
Mean velocity in orbit $=3680 \mathrm{~km} /$ hour $=2287 \mathrm{~m} . \mathrm{p} . \mathrm{h} .=33$ miniutes of arc $/$ hour
Regression of nodes, period $=18.5995$ years, annual change $=19.358^{\circ}$
Specific gravity $($ mean $)=3.34$: ratio to Earth's mean $=0.6043$
Surface gravity $=162 \mathrm{cms} / \mathrm{sec}^{2}=5.31 \mathrm{ft} / \mathrm{sec}^{2}=0.165$ of Earth's
Temperature of surface, sun at zenith $=101 \mathrm{C}$: night $=-157 \mathrm{C}$ (approximately)
Velocity of escape at surface $=2.38 \mathrm{~km} / \mathrm{sec}=1.48 \mathrm{miles} / \mathrm{sec}=0.213$ Earth's

NEON LIGHTING.

1A	2 A	$3 B$	4B	$5 B$	6 B	7 B		88		1B	$2 B$	3A	4 A	5A	6A	7 A	0			
1																	2			
H																	He			
3	4											5	6	7	8	9	10			
	Be											B	C	N	0	F	Ne			
	T																			
11	12			TRANSITION			ELEMENTS					13	14	15	16	17	18			
Na	Mg								AI	Si	P	S	C1	Ar						
19	20	21	22	23	24	25				26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Qn	Ga	Ge	As	Se	Br	Kr			
37	38	39	40	41	42	43	44	45	46	48	48	49	50	51	52	53	54			
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe			
55	56	57^{*}	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86			
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Rt	Au	Hg	T1	Pb	Bi	Po	At	Rn			
	88	89^{*}																		
Fr	Ra	Ac																		
Lenthanides			* 57	58	59	60	61	62	63	64	65	66	67	68	69	70	71			
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
Actinides ${ }^{*}$			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103			
			Ac	Th	Pa	U	Np	Am	Cm	Cm	Bk	Cf	Es	Fm	Md	No	Lr			

Diagram of a mirror periscope.
The second reflection cuts out the inversion produced by the first one.

PLANET'S.

Mercury	Distance from 0.387899	$\begin{aligned} & \text { Sun } \\ & 57.9^{\circ} \end{aligned}{ }^{6} \mathrm{kms}$	$\begin{aligned} & \text { Sidereal period (yrs) } \\ & 0.24085 \end{aligned}$	Urbit velocity $47.8^{(\mathrm{km} / \mathrm{s})}$
Venus	0.723332	I08.I	0.61521	35.0
Earth	1.0	149.5	1.0	29.8
Mars	1. 523691	227.8	1.88089	24.2
Jupiter	5.202803	778	11.86223	13.1
Saturn	9.538843	1426	29.45772	9.7
Uranus	19.181951	2868	84.01331	6.8
Neptune	30.057779	4494	164.79445	5.4
Pluto	39.43871 (av.)	5896 (av.)	247.686	4.7

POLARISCOPE, NORRENBURG

PRISM.

Infrared

As the white light enters the prism it is dispered because the light of longer wavelength bends more than that of shorter.

Waves of red and blue light co-existing as they would in a light bean.

```
Fropellant combinations:
    Liquid Monopropellants:
    Low energy monopropellants 160-190
    Hydrazine
    Sthylene oxide
    Hydrogen peroxide
    High energy monopropellants 190-230
Nitrome thane
Bipropellants (liquid):
Low energy bipropellants 200-230
rerchloryl-fluoride-Available fuel
Analine Acid
J P 4-Acid
Hydrogen Peroxide-J P 4
Medium energy bipropellants
230-260
#ydrazine-acid
ammonie-Nitrogen Tetraxide
High energy biproppellants 250-270
Liquid Oxygen - J P 4
Liquid Oxygen - Alcohol
Hydrazine - Chlorine trifluoride
Very high energy bipropellants 270 - 330
Liquid Oxygen - Fluorine-J P 4
Liquid Oxygen - Ozone-J P 4
Liquid 6xygen - Hydrazine
Super high energy biproppelants 300-385
Fuorine - Hydrogen
Fluorine - Ammonia
Ozone - Hydrogen
Fluorinen - Diborane
```


NUCLBAR

NBRVA nuclear rocket engine diagram.
KEY:

I Liquid Hydrogen Tank
2 Gimbal
3 Pump
4 Turbine
5 Turbopump exhaust

6 Noczle coolant pipe (carries full H flow)
7 Shield
8 Bleed to turbine (\% of reactor efflux)
9 Turbine power control valve

QUARKS

Diagram showing the combinations of Quarks needed to form the previous pictures of Baryons and Mesons.

| Waveband no.: | Wavelength in cas: | | Metric subdivisions: | Name: |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | $I 0^{6}-I 0^{7}$ | Myriametric | VLF | Very low |
| 4 | $I 0^{5}-I 0^{6}$ | Kilometric | LF | Low |
| 5 | $I 0^{4}-I 0^{5}$ | Hectametric | MF | Kedium |
| 6 | $I 0^{3}-I 0^{4}$ | Decametric | HF | High |
| 7 | $I 0^{2}-I 0^{3}$ | Metric | VHF | Very high |
| 8 | $I 0^{1}-I 0^{2}$ | Decimertic | UHF | Ultra high |
| 9 | $I 0^{0}-I 0^{1}$ | Centimetric | SAF | Super high |
| 10 | $I 0^{-1}-I 0^{0}$ | Millimetric | EHF | Extra high |
| 11 | $I 0^{-2}-I 0^{-1}$ | Decimillimetric | - | |

Frequency band:	Frequency range: (Gigacycles)	Wavelength (came):
P-Band	$0.225-0.39$	$1.40-76.9$
L-Band	$0.39-1.55$	$76.9-19.3$
S-Band	$1.55-5.20$	$19.3-5.77$
X-Band	$5.20-10.90$	$5.77-2.75$
K-Band	$16.90-36.0$	$2.75-0.834$
Q-Band	$36.0-46.0$	$0.834 m 0.652$
V-Band	$46.0-56.0$	$0.652-0.536$
C-Band	$3.9-6.2$	

A new waveband has been proped: Fl / F, to extend from $10^{7}-I 0^{8}$ ums.

HADIONETER

Basically, this instrument works because the black side of the vane absorbs the heat, and the light oilvered reflects it, so that it steyb cool. Due to a process oalled 'Thermal Transpiration' more jas polecules collect on the black sides, when the bulb is heated, so that there is preesure. This forces the vanes to trum clockwise, but when the bulb is cooled, the process is reversed, and the vanes ratate counter-clockwise.

REFRACTOMETER, ABBE

RRPRACTION, PHIANCMENA DUE TO

PALSS DEPTH:

MIRAGE

LINSESS

OPIIC FIBRES

RAINBOW

A rainbow is only visible directly away from the sun because the rainbow is too faint compared with the sun. 10% of the rain droplets have double internal reflection, so that a secondaty bow is very faint.

SATELLITES			
	Distance (1000 kms)	Sidereal period (days)	Magni.tude
EARTH			
Moon	384.4	27.32166	-I2.5
MARS			
Phobos	9.4	0.31891	II
Diemos	23.5	I. 265	I2
JUPITIER			
V	I8I	0.49818	13
Io	422	1.76914	5.5
Europa	671	3.55118	6.1
Ganymede	IOTI	7.15455	5.1
Callisto	1884	I6.68902	6.2
VI	II480	250.57	14.7
VII	II740	259.67	\$8
X	II860	263.55	19
XII	21200	631.1	18
XI	22600	692.5	19
VIII	23500	738.9	I7
IX	23700	758	18.6
SATURN			
Mimas	186	0.94242	I2.I
Enceladus	238	1. 337022	II. 7
Tethys	295	I. 88780	I0. 6
Dione	378	2.73692	I6.7
Fhea	582	4.51750	IO
Titan	1222	15.94945	8.3
Hyperion	I481	21.27666	15
Japetus	3562	79.33082	10.8
Phoebe	I2960	550.45	I4

SHADOAS

A Coronagraph. This produces an artificial eclipse allowing the solar corona to be observed.

Solar spectrograph. The long tube length means that the lines on the spectrum can spread out more.

Ceolostat. Mirror A moves with the sun, so that Mirror B reflects it in the same path all the time.

SUPERSWIC

Tube of air molecules

Equilibrium

Southern Sky

STARS, NAVIGATIONAL

Name	Origin
Acamar	A
Achernar	A
Acrux	M
Adhara	A.
Aldebaran	A
Alloth	A
Alkaid	A
Al Na 'ir	A
Alnilam	A
Alphard	A
Alphecca	A
Alpheratatz	A
Altair	A
Ankee	A
Antares	G
Arcturus	G
Atria	M
Avior	M
Bellatrix	1
Betelgeuse	A
Canopus	G
Capella	L
Deneb	A
Denebola	4
Diphda	A
Dubhe	A
Blnath	A
EItanin	A
Enif	A
Fomalhaut	A
Gacrux	M
Glenah	A
Hadar	M
Hamal	A
Kaus Australis	A
Kochab	A
Markab	A
Menkar	A
Menkent	M
Miaplacidus	A
Mirfak	A
Nunki	B
Peacock	\%
Polaris	L
Pollux	L
Procyon	G
Rasalhague	A

Bayer Name
θ Eridani
α Bridani
α Crucis
\in Canis Majoris
α Tauri
E Ursa Majoris
η Ursa Majoris
α Gruis
\in Orionis
α Hydrae
\propto Corone Borealis
\propto Andromeda
\propto Aquilae
\propto Phoenicis
\propto Scorpii
α Bootis
人 Triangula Australis
E Carinae
y Orionis
α Orionis
α Carinae
\propto Aurigae
\propto Cygni
8 Leonis
\& Ceti

* Ursa Majoris
\& Tauri
y Draconis
\in Pegasi
α riscis Austrini
y Crucis
y Corvi
β Centauri
α Arietis
6 Sagitaríi
β Urea Minoris
\propto Pegasi
α Ceti
θ Centauri
β carinae
α Persei
σ Sagitarrii
α Pavonis
α Ursa Minoris
β Geminorum
α Canis Minoris
α Ophiuchi

Star	Constellation	Apparent magnitude	Colour
Sirius	Canis Major	- 1.43	White
Canopus	Carina	-0.73	Yellowish
a Centauri	Centaurus	- 0.27	Yellowish
Arcuturus	Bootes	- 0.06	Orange
Vega	Lyra	0.04	Bluish-White
Capella	Amriga	0.09	Yellowish
Rigel	Orion	0.15	Bluish-White
Procyon	Canis Kinor	0.37	Reddish
Achernar	Eridanus	0.53	Bluish-White
Betelgeuse	Orion	Variable	Reddish
β Centauri	Centaurus	0.66	Bluish-white
Altair	Aquila	0.80	White
Aldebaran	Taurus	0.85	Orange
Acrux	Crux	0.87	Bluish-White
Antares	Scoppio	0.98	Reddish
Spica	Virgo	1.00	Bluish-White
Fowalhaut	Piscis Australis	1.16	White
Pollux	Bemini	1.16	Orange
Deneb	Cygnus	1.26	White
β Crucis	Crux	1.31	Bluish-White

1. Sun	Distance (L.Y.)	Brightness	
2. a Centauri A	0	1.0	Colour
3. a Centauri B	4.3	1.0	Yellow
4. a Centauri C (Proxima)	4.3	0.28	Yellow
5. Bernard's star	6.0	0.00005	Orange
6. Wolf 359	7.7	0.0004	Red
7. Luyten 726 - 8 A	7.9	0.000017	Hed
8. Luyten 726 - 8 B	7.9	0.00004	Red
9. Lalande 21185	8.2	0.00003	Red
10. Sirius A	8.7	0.0048	Red
11. Siriua B	8.7	23.0	Red
12. Ross 154	9.3	0.0008	White
13. Ross 248	10.3	0.00036	White
14. E Eridani	10.8	0.0001	Red
15. Ross 128	10.9	0.25	Red
16. 61 Cygni A	11.1	0.0003	Orange
17. 61 Cygni B	11.1	0.052	Red
18. Luyten 789 - 6	11.2	0.028	Orange
19. Procyon A	11.3	11.3	0.00012

R Andromedae	0	22	38	18	6.1-14.9	409
W Andromedae	2	14	44	4	6.7-14.5	397
A Aquilae	19	4	8	9	5.7-12.0	300
R Arietis	2	13	24	50	7.5-13.7	189
R Aurigae	5	13	53	32	$6.7-13.7$	459
R Bootie	14	35	26	57	$6.7-12.8$	223
R Cassopeiae	23	56	51	6	5.5-13.0	431
T Cassopeiae	0	20	55	31	$7.3-12.4$	445
T Ceghei	21	9	68	17	5.4-11.0	390
Omicron (Mira) Ceti	2	17	-3	12	2.0-10.1	331
R Coronae Borealis	15	46	28	18	5.8-14.8	Irregular
W Coronae Borealis	16	36	37	55	7.8-14.3	238
R Cygni	19	35	50	5	$6.5-14.2$	426
U Cygni	20	18	47	44	6.7-11.4	465
W Cygni	21	34	45	9	5.0-7.6	131
SS Cygni	21	41	43	21	$8.2-12.1$	Irregular
Chi Cygni	19	49	32	47	3.3-14.2	407
R Draconis	16	32	66	52	$6.9-13.0$	246
R Geminorum	7	4	22	47	6.0-14.0	370
U Geminorum	7	52	22	8	8.8-14.4	Irregular
S Herculis	16	50	15	2	7.0-13.8	307
U Herculis	16	23	19	0	$7.0-13.4$	406
R Hydrae	13	27	-23	1	4.0-10.0	386
R Leonis	9	45	11	40	5.4-10.5	313
X Leonis	9	48	12	7	12.0-15.1	Irreguàar
R. Leporis	4	57	-14	53	5.9-10.5	432
R Lyncis	6	57	55	24	7.2-14.0	379
W Lyrae	18	13	36	39	$7.9-13.0$	196
HR Delphini	20	40	18	58	3.6 - ?	Nova, 1967
Nova Vulpeculae	19	45	27	2	4.8 - ?	Nova, 1968
U Orionis	5	53	20	10	5.3-12.6	372
R Fegasi	23	4	10	16	7.1-13.8	378
S Persei	2	19	58	22	7.9-11.1	810
R Scuti	18	45	-5	46	$5.0-8.4$	144
R Serpentis	15	48	15	17	5.7-14.4	357
SU Tauri	5	46	19	3	9.2-16.0	Irregular
R Ursae Majoris	10	41	69	2	6.7-13.4	302
S Ursae Majoris	12	42	61	22	$7.4-12.3$	22\%
T Ursae Majoris	12	34	59	46	6.6-13.4	257
S Virginis	13	30	-6	56	6.3-13.2	380
R Vulpeculae	21	2	23	38	$8.1-12.6$	137

TWO PICTURES A

Left eye
Right Eye

Picture A Picture B

The two pictures apperar superimposed and thus 3-dimensional.

Two sheets of polaroid with their eady-axes marked in top of each other. Behind each sheet there is a picture on transparent film. Both pictures are of the same thing, but from differant angles. The easy-axes of the polaroids are not at 90° otherwise the picture behind the secind polaroid would never be visible.

Left eye At 90° to the behind polaroid, so that the picture the back one is not visible to this eye. However, the picture behind the front one is visible.

Right eye
At 90° to the front polaroid, so that only the picture behind the back one is visible.

Modern refractor - quite efficient, but it is impossible for practical reasons to make for telescope, very large lenses. To re-invert the image in the astronomical refractor for terrestrial work, an auxiliary lens can be inserted at $2 f$ from the image formed by the objective.

Cassegrainian reflector.

The filament produces a stream of electrons (called a cathode ray) which are attracted to the anode, and then race on through the deflection plates which, being of negative charge, deflect the now positive electrons. These plates deflect the rays so that it traverses the screen, which is made of a fluorescent material which gives off light when an electrical charge hits it, 405 or 625 times a second, thus leaving a bright trail. vuring each line, the intensity of the bean is varied to give light and dark, thus producing a picture.

Line
Return
Graph of the speed of the dot while traversing a line and returning to its starting point.

CLINICAL

Maximum

Minhimum

| A Cover | E Silvered surfaces | |
| :--- | :--- | :--- | :--- |
| B Cork | F | Netal casing |
| C Double-walled glass bottle | G Spring | |
| Dv High vaccuum | | |

The vaccum prevents heat coming to the contents of the bottle by convection or conduction, and the silvered surfaces by radiation.

Gas out
Invar is an alloy of steel which contains 36% of hickel. It expands on $1 / 1000000$ of its length per degree Centigrade. When the brass tube expands it pushes its joiner to the invar bar to the left, and thus the invar bar pulls the valve closer so that the gas flow is reduced. The opposite happend when the temperature falls.

ELECTRICITY

At a certain temperature the bimetal bend so that the contacts break away from each other, and close when under that temperature.

UNIVERSE, Nature of

According to Euclidean geometry, the angles of a triangle add up to 180°, and the proof of this is periectly valid. But, take a triangle drawn on the surface of a sphere, the shortest distance between two points on the surface of the sphere is curved. Thus we find that the angles of a triangle here add up to slightly more than 180°. This was proved in 1823 by a man called Gauss who used surveying equipme to measure the triangle made by Brocken, Hohehagen, and Inselberg in Germany. The longest side in the triangle is about 100 kms .. He measured the interior angles as:
86° I3'58.366"
$53^{\circ} 64^{\prime} 5.642^{\prime \prime}$
$40^{\circ} 39^{\prime} 30.165^{\prime \prime}$
$180^{\circ} 00^{\prime} 14.173^{\prime \prime}$
He realized that if space was curved, then the three angles of a triangle taken on a much larger scale, would total much more than 180°. The question is: How do you mea ure distances in space when we are stuck within our solar system? When Pluto's orbit was predicted, using its effect gravitation-wise on othet planets, the error was found to be small. If the radius of curvature of the universe was small, then a significant error would have been discovered. As ther was almost no error, it is certain that the radius of curvature of the universe is not less than 5×10^{17} cms.. Another method of proving t e curvature of space was suggested by Schwarzschild. Thit was called the trigonometrical parallax. In this method, observations of a star were taken 6 months apart. The angle made between the line joining Earth to the Sun and Earth to the distant star were measured at each time. We will call these two angles a and b . On a flat sur ace, or, in this case, in flat space, a plus b is less than 180. So far as we know, this is true out ntil the limits of our present observations , at 3×10^{20} cms.. Therefore, we might conclude that the radius of curvature of the universe was bigger than this, which is not neccessarily true, because some of our measures of distance, assurie that space ia flat. But, by triangulation, we know that the radius of the universe must be greater than 10^{28} cms.. With this distance is accosiated the charecteristic LENGTH of the universe, but is this the radius of the radius of curvature of the universe ? This is one of the major problems confron-
are many theories of the universe, but all have one thing in common, they all accept the fact that the universe is expanding at a considerable rate. The proof of this comes in the doppler effect, which is discussed in another chapter. However, there is one possible paradox. That is that the galaxies all seem to be moving away from our galaxy, which is obviously untrue. What is obviously happening is that the distances between the galaxies are being increased, making it look as if all the galaxies are going away from us. The nearer galaxies are receding slowly, but the most distant ones which we have seen are receding at speeds of up to $\frac{1}{2}$ the velocity of light. There are two main theories of the universe which are worth discussing: The Big Bang, or Superdense theory, and the Solid State theory. The superdense or Big Ban theory postulates that there was an original single Superdense mass of energy and matter, which exploded. Thus the galaxies are fragment of this original 'bomb' and are flying outwards at a high speed. The fact thet the universe is expanding means that its radius is also doing so. The other theory is the Solid State theory. This postulates that the universe started to expand with very little matter in it except hydrogen, but that as gaps are left by receding galaxies, these are filled in and the hydrogen fusions to produce all the other elements we know of. This would explain the fact that hydrogen is by far the most abundant element in the universe. Now I must explain the death of the universe. The expansion which we detect must come to an end when the first galaxies recedes at the velocity of light, because this speed is unachievable. We have good reason to believe that the speed of recession is increasing as time goes on, so this point must finally come. The other 'Lying' factor in the universe is that all energy finally unwinds itself down to heat, so it is thought that eventually, this may be the only form of enerey in the universe.

