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Abstract. Correlations between the energies incident 
on two or three detectors around e+ e- annihilation 
events are considered as a probe of the QCD structure 
of the events. Practical methods for deducing two­
detector energy correlations (which give the mean 
product of energies incident on two detectors as a 
function of their angular separation) from measured 
events are devised. Analytical formulae for energy 
correlations from QCD perturbation theory are given, 
but it is found that large corrections from hadron 
formation obscure these asymptotic predictions at 
available energies. Correlations between the final state 
and the incoming e± beam direction are discussed, and 
observables are presented which measure the angular 
distributions of planes of final particles with respect to 
the beam axis (but do not require explicit determi­
nation of the planes). Finally, three-detector energy 
correlations and their moments are treated, and meth­
ods for investigating planar structures in e+ e- anni­
hilation events are devised. 

1. Introduction 

In a previous paper [lJ1, we introduced the shape 
para peters (the P, are the Legendre polynomials, and 
the sum runs over all pairs of particles) 

H - L Ipillp) P (' . ' ) , - ,p. p. "s I J 
1,J 

(1.1) 
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The background and motivation of the present work is discussed 
in [1]. As in [1] , e+e- ..... qq(GG ... ) represents the sum of processes 
e+e- ..... qq, e+e- ..... qqG, e+e- ..... qqGG and so on, together with 
virtual (loop) corrections to these. , denotes a 3S1 QQ heavy quark 
bound state (such as !p or n. Another notation from [1] is the 

kinematic definition x;=2EJ/Vs 

which describe the distribution of energy in the final 
states of e+ e- annihilation events and whose mean 
values may be computed from QCD perturbation 
theory. In this paper, we describe further methods for 
analyzing event shapes 2 . In Sect. 2, we consider two­
point energy correlations, whose mean values provide 
a reexpression of the information on event shapes 
contained in the <H, ), The H, were explicitly con­
structed to be rotationally invariant ; Sect. 3 discusses a 
generalization of the H, in which measures correlations 
between the final state and the incoming beam 
direction. 

We define the two-detector energy correlation 
function introduced in [lJ and [3J by 

where the Ipd are the sum of the moduli of the three­
momenta of particles incident on two detectors cover­
ing the regions (Ji of total solid angle I(JJ The 
rotationally-invariant observable F 2 is formed in each 
event by averaging F 2 over all possible positions for 
the detectors, while maintaining their relative orien­
tation. F 2 may, therefore, be written as 

(1.3) 

where X signifies the relative orientation of (J 1 and (J 2' 

and the averages are over all positions of (J 1 and (J 2 in a 
particular event which maintain this: F 2 does not 
depend on the orientation of the final state with respect 
to the beam axis. For theoretical purposes, such as 
those of [2J and [4J, it is convenient to consider the 
idealized energy correlation p~t(X) between two point 

2 The material in this paper consists mainly of Sects. 4-6 of the 
preprint [2] 

0170-9739/80/0004/0237/$04.00 



238 O. C. Fox and S. Wolfram: Two- and Three-point Energy Correlations in Hadronic e+ e- Annihilation 

detectors. This has the useful property that 

1 1 

HI = - S F~t(x)Plx)dX· 
2 - 1 

For large I, PI(X) may be approximated by 

PI(cose) = 1 lei <2/1 

=(_1)1 In-el<2/1 

=0 otherwise. 

(1.4) 

(1.5) 

Hence to obtain estimates for the <HI) at large I, one 
requires only the behavior of < F~t(X) for X close to 
± 1, corresponding to energy correlations between 
detectors which are either close together or back-to­
back (anticollinear). Such estimates are given in 
[2,4,5]. 

In order to assess to what extent the various 
predictions presented in this paper constitute tests of 
QeD, one should compare them with results from 
other theories. Appendix B gives some predictions 
which would follow from a theory with colored scalar, 
rather than vector, gluons. 

2. Rotationally-Averaged Two-Detector Energy 
Correlations 

2.1. Formalism and Calculational Techniques 

In this section we discuss the rotationally invariant 
observable F 2 defined in (1.2). The two detectors used 
in this definition occupy areas (Jj(i = 1, 2) which are, in 
general, of arbitrary shape. However for simplicity, we 
shall restrict ourselves in this paper to the case in 
which the (Jj are congruent circular patches of angular 
radius cos - 1(<5). Hence l(Jd = 2n(1- <5) and F 2 is a 
function only of X and <5, where cos - l(X) is the angle 
between the centers of the two detectors (Jj. The 
arrangement is illustrated in Fig. 1. The generalization 
of our treatment to detectors of arbitrary shape is 

Fig. 1. Two circular detectors" " "2 of half angle cos - '(I»). cos - '(X) 
is angle between the centers of the detectors. F 2(X, I») is obtained by 
a veraging over all positions for the detectors which preserve the 
angle X 

straightforward. The best method of calculating F 2 

from events appears to be the use of the formula 

Ip·llp·1 
F 2(X ;<5)=2I - '- J U(X ; <5 ; cos<pj), 

.. s 
' , J 

(2.1) 

where the sums on i and j run over all the particles in 
the event (including the case i = j). The smearing 
function U is given by 

Here ndk is a unit vector in the direction of detector k 
and n . the unit vector in the direction of particle i. If 

.... Pl . 
Q d1 runs over all elements of the rotatlOn group, so 
that S dQd1 = 8n2 , then 

nd1 =Qd1 z 

nd2 = Qd1 R(X)z, 
(2.3) 

where z is a unit vector in the z direction and R(X) a 
rotation through cos - l(X) about the y axis. Finally in 
(2.2), the function e takes on the values 1 or 0, and is 
zero unless both the pairs nd1 , npj and nd2, npj lie within 
an angle cos - 1(<5) of each other, so that particle i is 
incident on detector 1 and particle j on detector 2. The 
rotational invariance of F 2 is exhibited by the fact that 
it has the same value for any choice of particle 
directions npj' npj so long as the angle <Pij between them 
remains fixed. For some purposes, it is more con­
venient to write U in the symmetrical form 

1 ~ ~ 

U(X ; <5; cos<Pij) = 8n21(J 111(J 21 S dQd1 dQpj 

e(Qd1 z, Qpj Z; Qd1 R(X) z, QpjR(cos <Pij)Z ; <5) . (2.4) 

Note that 

+ 1 

S U(X; <5; cos<pij)dX=2 (2.5) 
- 1 

which implies the same normalization for F 2 : 

+ 1 

S F 2(X; <5)dX=2, (2.6) 
- 1 

independent of the value of <5. 
In the limit <5-> 1, (J l' and (J 2 become point detectors 

separated by an angle cos - l(X). We define 3 

F~t(X) == Lim [F z{x; <5)] . 
b- 1 

In this case, U becomes simply 

U(X ; 1 ; cos<Pij) = <5(X - cos <Pij), 

3 In [1] , F~'(X) was called simply F(X) 

(2.7) 

(2.8) 
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and we may rewrite4 

F~I(X) = 22: IPil;P) (j(X - cos cPij) 

'" 
(2.9) 

and 

+ 1 

F 2(X; (j) = S dx' F~I(Xf) U(X; (j ; x') . (2.10) 
- 1 

F 2 may be expressed in terms of the HI' defined in (1.1) 
as 

_ ( 4n ) + 1 1 IPil12 
HI = 21 + 1 m~-I ~ Y;"'(QJ VS 

_ " Ipillp) P ( A..) 
- L... I COS'!'ij , 

i,j S 
(2.11) 

where the indices i and j run over the hadrons which 
are produced in the event, and cPij is the angle between 
particles i and j. When the first form for the HI is used, 
a particular set of axis must be chosen to evaluate the 
angles (QJ of the momenta, but the values of the HI 
deduced will be independent of the choice. The 
Legendre expansion of F 2 is 

F2(X; (j)= I(2/+ l)HI((j)PI(X) , (2.12) 
I 

where the HI as defined In (2.11) are Hl1), and 
correspondingly, 

F~I(X)= I(2/+1)HIPI(X) . 
I 

The relation between HI((j) and HI is 

Ip.llp .1 + 1 
HM)= I - '- ' S dxPb)U(x;(j ; COScPi) 

j , j S - 1 

so that (for circular detectors) 

I~((j) 
HI((j) = (1_(j)2 HI ' 

or equivalently 

U( . (j. A.. . . ) = " (21 + l)I~((j)Pb)PI(coscPij) 
X, , cos,!", '7 2(1-(j)2 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

which clearly illustrates the symmetry between X and 
coscPij also visible in (2.4). II(x) was defined in [1] as 

1 

II(X) = S PI(y)dy = V 1- X2 PI- 1(X). (2.17) 
x 

4 In practical calculations, F~r(X) can be found easily from (2.9), 
and then (2.10) can be used to obtain ( F 2(X, (j). Alternatively, one 
may use the rapidly convergent series (2.12). The latter method has 
the advantage that it also allows the calculation of the distribution 
1/(J d(J/dF 2 . It is clear that for both means and distributions, the H, 
are somewhat easier to extract from events than the energy cor­
relation F 2 

Note that as 1-> 00, HI ~ 1 but Hl(j < 1)~ 1/ 13 . Thus 
the series (2.12) is always absolutely convergent where­
as (2.13) diverges (for point particles). 

F 2(X ; (j) receives a contribution from events in 
which the same particle passes through both detectors. 
Although this is of little practical interest, it must be 
kept if the normalization condition (2.6) is to be 
maintained. In the point detector limit, (j = 1, this 
configuration contributes to F~I(X) a term 

(2.18) 

where the coefficient of the delta function is related to 
the asymptotic limit of the HI by 

(2.19) 

2.2. e+e- ->qq(G) 

In this section, we discuss mostly the idealized point 
detector energy correlation F~I(X) : results for finite 
detectors may be obtained by the smearing (2.10). 

All e+ e- ->qq events give 

(2.20) 

Three-particle final states give rise to a distribution of 
forms for F~I(X). Taking the fractional energies of the 

2E. 
particles to be X j = 0' < F~I(X) becomes 

I 11 1 da 
<F~ (X) = I 2: S dxidxjxix j - dd 

i,j 0 a Xi Xj 
i* j 

(2.21) 

where x j is determined by requiring that the angle cPij 
between particles i and j satisfies cos cPij = X, i.e., 

_ 2(1-xi) 
X . = -=---;--~ 
, 2+xJx-1)" 

The Jacobian is, therefore, simply 

1 
8xj 1_ 2xJ1-xJ 

8coscPij - [2+xJx-l)]2· 

(2.22) 

(2.23) 

Hence the process e + e - ->qq( G) [which represents the 
sum of e+ e- ->qq and e+ e - qqG calculated to O(O:s)] 
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gives 5 : 

<Fi'(x) = {6(1 + X) + 6(1- X)} + 16ets (X + 2) 
3n (1 + X)(l- X)5 

. {4(x 2 +4X+1)logC;X) 

+ 3(1- x)(1+ 3X)} 

+ { C _ 1 6( 1 + X) + C + 1 6( 1 - X)} , 

and, for example 

<FP'(O) = 32(3 - 410g2)ets ~ 
2 3n -O.77ets · 

(2.24) 

(2.25) 

[The form of <F 2(X; 6 =0.95) plotted in Fig.2 is 
indistinguishable from (2.24) except very close to 
X = ± 1 where the smeared delta function appear6.] 

The first term in (2.24) arises from the lowest-order 
process e+ e- -"qq. The second term accounts for the 
three-particle final state process e+ e- -"qqG. For 
X ~ - 1, this term becomes 

2ets r210g(~) 3 -} -3;l (1 + X) + (1 + X) + ... , (2.26) 

while for X~ + 1, the term is approximately 

ets {1 19 } 
-; (1 - X) + 30 + ... . (2.27) 

5 It is sometimes convenient to approximate < F~'(X) for 
e+ e- .... qqG by the value obtained by performing the sum (2.21) only 
over the q and q and neglecting contributions from the gluon. In this 
case, 

80( 1 { (1+ X) <F~'(X)= 3: 3(X-1)5(1+X) 24(3X+5)log - 2-

+(X-1)(x2 -14X-83)} 

so that 

<FP'(O) = 8(120 log2 - 83)0(, ~ 
2 9n -0.050(, . 

This is much smaller than the result (2.25) for the complete qqG final 
state since the q and q are rarely produced at 90°. Near X = - 1, the 
qq contribution becomes 

{ 
( l+X) } 210g --

-20(, 2 17 
3;- (l+X) +3(1+x)+ " ': 

the leading term here is the same as in (2.26) for the complete case, 
the subleading terms differ. For X'" + 1, < F~'(X) calculated using 
only the q and q has no divergence and its regular part tends simply 
to O(J30n 
6 In our phenomenological prescription for treating hadronic 
final states, we only consider qqG final states which have H 2 < H~ul. 

The form of <F~'(X) for e+ e- .... qqG when H~ul=0.8 is qualitatively 
similar to the result (2.24) (H~ul= 1), but there is a slight suppression 
near X= ±1 

5 

0.5 

0.5 

.... ...... 

<F > ---- e+e - - , - GGG 
2 1 _ e+e- -Qq IGI 

. " ------- .. 

.jS~ 4 0 GeV 

.. e+e--q ~ 

8 ~o. 95 

Free quark and gluon 
approximat ion 

- 0.2 0.2 0.6 1.0 

X 

Fig. 2. The mean value of the rotationally invariant energy cor­
relation F 2 as a function of detector separation X for fixed detector 
size given by (j =0.95 (opening angle'" 18°). The curves given are for 

simulated hadronic final states at Vs = 10, 20, and 40 GeV and in the 
approximation of free quarks and gluons. The free quark calculation 
marked qq(G) is, in fact, just the contribution of the qqG final state 
calculated with no H 2 cut and with no qq component added (this 
would contribute only at X'" + 1) 

The third term in (2.24) has two sources. First, it gives 
the contribution from O(ets) one-loop corrections to 
e+ e- -"qq, and second, at X= + 1, it receives contri­
butions of the form (2.18) from e+e--"qqG events in 
which one of the final particles passes through both 
coincident detectors. The constants C ± 1 both diverge 
logarithmically as the infrared regulator (e.g., a fic­
titious gluon mass /1) is taken to zero. The coefficient 
C + 1 of the delta function at X = + 1 is given simply by 
the mean of F~ame in (2.18): 

(2.28) 

where the average encompasses both qq and qqG final 
states at O(ets)' The nonlinearity of the form (2.28) in the 
energies of the final particles means that in averaging 
over possible final state configurations, collinear pairs 
of particles will be weighted differently from single 
particles which carry the sum of their momenta. For 
this reason, the collinear divergences from qq and qqG 
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final states will not cancel in (2.28), and C will 
d· I'k Z Z + 1 Iverge I e log(s/ f..t ) as f..t goes to zero. One finds, in 
fact, that (/3 = f..tz /s and ((2) = 10 Z /6) 

C + 1 "'" CXs [IOg(f3) + 77] 
10 18 (2.29) 

( + 2;1 [610gZ(f3) + 2110g(f3) - 12((2) - 41] + O(f3Z)) . 

However, the integral over X of the second term in 
(2.24) (regularized by the introduction of a finite 13) for 
<F~t(X», which arises from qqG final states, also has a 
logarithmic divergence in 13 close to X = + 1. This 
divergence cancels against C + 1 when < F~t(X) > is in­
tegrated over X with a (non-singular) weight function, 
such as P,(X). This is, of course, necessary in order that 
the <HI> obtained from <F~t(X» using (1.4) should be 
infrared finite as f..t--.O. Note that if detectors of finite 
area are considered, then <F~t(X» is smeared accord­
ing to. (2.10); the resulting <Fz(X; <5» is finite at all X, 
but dIverges at x=llike 10g(1-<5) [to O(cx)] as the 
detector size is taken to zero. s 

The coefficient of the O(cxs) delta function in the 
backward direction (X = -1) in (2.24) is given by 

C- 1 = (~2E~Ei') , (2.30) 

where if is a particle exactly back-to-back with i. This 
receives contributions only from loop corrections to 
e+ e- --'qq; in fact, it is simply the total cross-section 
for the process e+ e- --.qq (or, equivalently, the quark 
electromagnetic form factor) 7 : 

C -1 "'" -3~CXs [IOgZ(f3) + ~ 10g(f3) - ~ + + ((2)] 

( 
(2.31) 

+ ~ [logZ(f3) + 10g(f3) - 1 - 2((2)] + O(f3Z)) . 

7 Note that the form depends critically on the method of infrared 
regularization. If, instead of retaining a finite gluon mass, we had 

kept the quark off shell by an amount VYs', then the kinematic limits 

change, and roughly f3 is replaced by VY so that the form of (3.9) is 
modified, becoming 

C 2as 2 - 1"" 3;[ -210g y- 310gy+8((2)-I]. 

For on-shell fermions of mass VYs', a finite f3 must be retained to 
regularize soft divergences and 

C 2as 2 
- 1"" 3; [ -log y-410gf3logy-410g y + 8((2)- 5/ 2]. 

The double logarithmic terms in, for example, Eq. (2.3\) can be 
summed to all orders in as to obtain a leading log estimate for the quark 
form factor. The estimate will be dual (as by the usual inclusive­
exclusive connection) to results for quark fragmentation functions 
close to x = 1. The dependence of the form factor on the infrared 
regularization procedure will be manifest in the various ways in which 
the limit x-+ 1 is taken for the fragmentation function 

Once again, in integrals of <F~t(X», these divergences 
are canceled by corresponding divergences in integrals 
of the qqG contribution (2.25) to <F~t(X» around 
X = - 1. The presence of a 10gZ divergence in the 
individual terms around X = -1 is a consequence of 
the fact that a qqG final state becomes indistinguish­
able from qq if either one of the particles becomes soft 
or a pair of them are collinear. The introduction of a 
finite quark mass regularizes the collinear divergences 
to O(cxs), so that C + 1 would then exhibit no divergence. 
However, a single log divergence would remain in C -1' 

which could be regularized by taking a finite gluon 
mass (see Footnote 7). 

Divergences are present in F~t(X) at a given order in 
cxs' at any value of X for which F~t(X) is non-vanishing in 
lower orders. At O(cxs), e+ e - --.qq( G) gives divergences 
only at x= ±1, where < F~t(X» for e+e- --.qq is non­
vanishing. As described above, these divergences can­
cel against those from one-loop corrections to 
e+ e- --.qq when F~t(X) is smeared (e.g., by consider­
ation of detectors with finite area). In higher orders, 
< F~t(X» exhibits compensating divergences at each 
value of X: it must be considered a generalized func­
tion, meaningful only when smeared in X. This effect 
also afflicts the distributions in the HI : the <HI> are, 
however, genuinely infrared stable ; their construction 
from < F~t(X» via (1.4) effects the necessary averaging. 
The divergences in <F~t(X» render it potentially more 
sensitive to hadronization corrections: the formation 
of hadrons introduces a presently unknown smearing. 
The distribution of events in F z(X), 1/ (J d(J/dF z(X) is, as 
described below, extremely sensitive to unknown de­
tails of fragmentation. [The divergences which cancel 
in <F z(X» when smeared over small ranges in X appear 
as separated divergent peaks in the distribution in 
F z(X).] 

2.3. Heavy Resonance Decay ( --.GGG 

The decay ( --.GGG ofa heavy 3S 1 QQ resonance gives 

< F~t(X» = (1o z ~ 9) (1 ~ X)3 {(2 - 5X) VI=? (COS; 1 X) 

-(3xZ +4X+5)IOgC; X) +(1- X)(2 X-5)} 

( 131OZ -127) 
+ 2(102 _ 9) <5(1- X), (2.32) 

where the last term comes from events in which the 
same particle passes through both detectors. At X = ° 
one finds 

< F~t(O» = (1o Z ~ 9) [5(log2 -1)+; ] "",0.252 . (2.33) 
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Near X = -1, (2.32) becomes 

- 2() _ 9) [log C ; X) + 7 + ... J, (2.34) 

while at X = + 1, the regular part of (2.32) tends to 
1/(1O(n 2 - 9)):::: 0.114. 

The differential cross-section for '~GGG is barely 
distinguishable from uniform in three-body phase 
space, which would give 

<F~t(X»= (x:41)5 {(X2 +10X+13)lOgC;X) 

+3(1- X)(X+3)} 

+i<5(l- X), 

<F~W» = 24(13log2 - 9) ::::0.26. 

Near x= -1, <F~t(X» in this case becomes 

-3 [logC; X) + 3+ .. .J. 

(2.35) 

(2.36) 

This integrable divergence has its ongms in the 
Jacobian from the differential cross-section in (Xl' X 2) 

to that in (Xl' X). Near X = + 1, the regular part of 
<F~t(X» tends to 1/ 10. When a phase-space generated 
final state contains more than three particles, the 
Jacobian divergence at x= -1 visible in (2.36) [and 
which becomes <5(1 + X) for a two-particle final stateJ 
disappears. This occurs even for the rather constrained 
6 particle final state discussed in Sect. 2.5 (2.39). 
<F~t(X» becomes progressively flatter as the multi­
plicity of the final state increases and for a truly 
isotropic final state containing an infinite number of 
particles, F~t(X) = 1. [It is a general feature of QeD 
processes that the structure of events at the lowest 
contributing order in as is usually well-approximated 
by distributing the final state particles uniformly in the 

available phase space (appropriate for their multi­
plicity). In higher orders, infrared divergences tend to 
concentrate further emissions into jets along the direc­
tions of the partons at lowest order, thereby approxi­
mately preserving the lowest order shape, at least on 
large angular scales 8. 

2.4 . <F 2> and 1/(J d(JldF 2 for H adronic Two- and 
Three-Jet Events 

In this section we estimate the energy correlations to 
be expected in hadronic events arising from the pro­
cesses e+ e- ~qq(G) and e+ e-~' ~GGG. We also give 
estimates for the uncorrected process e+ e- ~qq which 
would occur alone if as = O. To account for fragmen­
tation of quarks and gluons into hadrons, we use the 
phenomenological model developed by Field and 
Feynman [6]. For qq(G) final states, we use the 
somewhat ad hoc prescription introduced in [lJ, and 
used successfully in analyses of data from PETRA [7]. 

8 The <H,> for a process are therefore typically well approxi­
mated by distributing the partons in the lowest-order final state 
uniformly in phase space. For two-particle final states, only one 
point in phase space is, of course, allowed and, as usual, H, = 0(1) for 
I odd (even). [The processes e+ e- ->qq(GG ... ) usually lead to two jets 
and, therefore, roughly preserve the lowest-order results for the 
<H, >, However, as I increases, the <H,> become progressively more 
sensitive to the detailed structure of the events and probe the internal 
constitution of the jets so that the lowest order structure is lost.] For 
three-particle events, a phase space distribution gives 

<H 2> =(3n2 -29)",,0.61 

<H 3> =(75n2 - 740)",,0.22 

<H",> = 3/8 =0.375. 

Note the extreme similarly between these results and those for 
(-> GGG at lowest order «H2> ",,0.62, <H3 > ",,0.22, <H",> ",,0.3751). 
In higher orders of IX" the <H,> for large I again deviate significantly 
from the lowest-order results or from the phase space approximation 
to them. For an n particle final state distributed uniformly in phase 
space, the <H,> are approximately l/n so that as n-> 00, the usual 
result <H,> =0 (1~0) for a genuinely isotropic system is regained 

-- 8 00.95} Realistic hadranic ........... 8 0 0.95} Free quark and . 
..IS 0 20 GeV ----- 800.9 events _ .- 8 00.9 gluan approximation 

A 
>< 

0.5 

.:;, 
..... :.::::-: .. :-::-: .~. 

O~I.O -0.6 -0.2 0.2 
X 

0.6 -1.0 -0.6 -0.2 0.2 
X 

0.6 

Fig.3. A comparison at Vs =20GeV of the 
mean value of the energy correlation F 2 for 
two different detector sizes given by ,,= 0.9 
or" =0.95 (corresponding to detectors of 
half-angle 26° and 18°, respectively) 
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RATIO OF <F~' (X) FOR e+e- -qqG AND e+e--qq HADRON IC EVENTS 

"'<Xi' 
ci 
V 

1.5 

N --!if 1.0 
I cr 
c5 ,:.: 
ICT ~ 
c:: Q. N 

x~ 

~ 

-I 

.rs~ 20 GeV 

qq(G)~(qqG, H2 < O.B) + 0.65qq 

-0.5 o 
X 

0.5 

Fig. 4. The ratio of the mean energy correlation between point 
detectors <F~'(X)= <Fh;o = 1) for hadrons produced by the 
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Our method consists in generating true three-jet events 
when the qqG produced in the subprocess satisfy the 
cut H 2 < 0.8, and two jet events otherwise in such a 
way as to give the correct total 0(g2) cross-section : 
~ao(1 +ajn). The cut on H 2 represents the resolution 
of the hadron final state to changes in the subprocess 
final state: the hadrons do not reflect the presence of 
the extra gluon if its transverse momentum is too 
small. 

In Figs. 2 and 3 we show estimates of <F 2(X; b) 
with b = 0.95 (18 0 detectors) and b = 0.9 (260 detectors) 
for hadronic events, and in the free parton approxima­
tion. At sufficiently high energies, hadronization effects 
must disappear, but Figs. 2 and 3 show that they are 
still present in the PETRA, PEP energy range 

20 ~ VS ~ 40 Ge V. The effects are rather less severe for 
the l /ada/dH, (18=2, 3) discussed in [1]. The results for 
hadronic events in Fig. 3 with b = 0.9 are slightly closer 
to the free parton approximation than those with 
b = 0.95 : the small difference indicates that hadroni-
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(corresponding to half-angles of 26°), to be compared with the results 
in Fig. 5 obtained with b = 0.95 

zation effects a smearing over still larger angles. When 
b becomes very small, however, the smearing is so 
great that little information on the events remains in 
F 2' In fact, one must then introduce weight functions 
into the smearing thereby reducing to a calculation of 
the <HI )' 

In the free quark and gluon approximation, the 
<F 2(X; b) for e+ e- -+qq events is symmetrical under 
X-+ - X· Fragmentation destroys this symmetry. (Near 
X = 1, <F 2(X; b) probes energy correlations within a 
single jet, while near X = -1, it receives contributions 
only from pairs of particles in opposite jets.) The 
process (-+ GGG also exhibits considerable violation of 
X-+ - X symmetry. This violation is conveniently mea-

l 

sured by <H 3) = t S p 3(X) <F~l(X) dx· 
- 1 

In Figs. 5 and 6 we present calculations for the 
distributions 1/(J d(J/dF 2' These are rather disappoint­
ing. In our study of the HI [1J , we found that the 
distributions 1/(J d(J/dHI (at least for / = 2 and 3) were 
not seriously affected by hadron fragmentation and 
provided very distinctive tests of the basic dynamics. In 

the case of F 2' the free quark and gluon calculations 
show striking structure (see, for example, the lower 
right-hand graph in Fig. 5) ; however, hadron fragmen­
tation is a huge effect even for the case b = 0.9 shown in 
Fig. 6. It is worth remembering here that whereas 
knowledge of <F~l(X) (as a function of X) and <HI ) (as a 
function of /) are essentially equivalent, the distributions 
1/(Jd(J/dF 2 and 1/(J d(J/dHI contain inequivalent infor­
mation. It appears that the shape information con­
tained in 1/(J d(J/dH 2.3 is less sensitive to hadron 
fragmentation than that in 1/(J d(J/dF 2 ' The figures 
include the case X = 0, corresponding to two detectors at 
right angles. As expected, two-jet events give a distri­
bution in 1/(Jd(J/dF2 sharply peaked at F2(X=0,b)=0 
whereas 3 jet final states give a broader distribution. On 
comparing e+ e- -+( -+GGG and e+ e- -+qq(G), one sees 
that the former gives many more events with large 
values of F 2(X = 0, b). This behavior is qualitatively as 
expected and should be preserved regardless of how one 
treats the hadron fragmentation. Note that the extreme 
sensitivity of 1/(J d(J/dF 2 to fragmentation is to be 
expected because of the infrared instability of F 2 ' The 
inadequacy of 1/(Jd(J/dF2 compared to 1/(Jd(J/dH2.3 is 
in strong support of the relevance of the criterion of 
infra-stability for successful shape parameters. 

2.5. Heavy Quark and Lepton Production Events 

In [1J we discussed various possible mechanisms for 
the decay of heavy mesons M (= Qqs) containing heavy 
quarks Q: 

M -+q' qqqs (3 -jet) 

M -+q'Gqs (2-jet) (2.37) 

M-+q'q (2-jet) . 

We consider only energies just above threshold for 
MM production (so that MM are almost exclusively 
produced). Then 2-jet decays to free partons give 

< F~l(X) = Hb(1- X) + b(1 + X) + 1J , 

<F~W)= t · 
(2.38) 

Three-parton decays yield 

so that 

<F~W) = t + 8(811-1170 log2)~0.642. (2.40) 
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At X = -1, (2.39) becomes 7/2, while the regular part 
goes to 19/35 as X--' + 1. _ 

Figure 7 shows the <F 2(X) for threshold QQ 
production and decay in the free parton approxima­
tion, and with estimates of hadronization corrections. 
The <F 2(X) tend to be close to the isotropic limit 
<F 2(X) = 1. We also give results for produc~on of 
heavy lepton pairs at threshold decaying to udvL ; in 
this case, we divide F 2 for each event by H 0 to 
compensate for the missing neutrino energy. 

3. Correlations with Respect to the Beam Axis 

3.1. Introduction 

We have discussed above the rotationally invariant 
observable F 2(X; b) obtained by averaging F 2' defined 
in (1.2), over all possible positions of the two detectors 
which preserve their relative orientation. This aver­
aged F 2(X; b) characterizes the shapes of events and is 
probably the most direct probe of their dynamical 
mechanisms. However, QCD also makes unambiguous 
predictions for the dependence of the shapes of events 
on their orientation with respect to the beam axis, 
which dependence we have thus far brusquely aver­
aged away. In this section we consider this a~lgular 
dependence using both the energy correlation F 2 and 
its moments with respect to X, which represent 
rotationally-non-invariant analogues of the HI' In 
Sect. 3.2 we analyze the general form of the angular 
dependence of F 2 and describe a particularly con­
venient choice of angular coordinates. In Sect. 3.3 we 
define the moments E of F 2 which provide an infrared 
stable measure of the angular correlations, and in 
Sect. 3.4 we present results for the three basic processes 
e+ e- --'qq, e+ e- --'qq(G) and e+ e- --.( --.GGG. We con­
sider these both in the free quark and gluon approxi­
mation and including the effects of hadron fragmen­
tation. However, we shall not consider either heavy 
quark or lepton production events9 ; further, our re­
sults are specialized to the case of unpolarized electron 
and positron beams. It is straightforward to generalize 
our results in these two areas. 

3.2. General Form of the Angular Dependence of 
Energy Correlations 

Consider two detectors fixed at particular positions in 
space separated by an angle X. The directions of these 
detectors from the point of interaction (and the normal 
to the plane defined by them) may be used to define an 

9 For heavy meson pair production near threshold, the spinless 
nature of the mesons prevents any angular dependence of energy 
correlations, but for spin - t heavy lepton pair production, there 
should be a definite non-trivial angular dependence 
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Fig. 7. The mean energy correlation function ( F 2(X, /»)) for events 
containing heavy quark or lepton production with various mecha­
nisms for heavy meson decay. For comparison, we show results for 
the continuum reaction e+ e- ..... qq(G) from Fig. 2 

orthogonal set of axes xyz with respect to which one can 
specify the direction of the beam axis. Temporarily we 
consider the detectors to be fixed and take the beam 
direction as variable. In the next paragraph, we shall use 
the alternative choice of a fixed beam direction and 
detectors at variable angles. With the detectors fixed, one 
assigns one of the axes to be the normal and the other two 
to be in the plane formed by the two detectors. The 
direction of the axes in the plane may be chosen 
arbitrarily. All choices, if consistently used, are, of 
course, equivalent; however, some may be more con­
venient than others. As we shall see, the best choice is to 
take the z axis to be the normal to the plane of the 
detectors, and the x and y axes to be in the plane, with the 
x axis defined to be on the line bisecting the angle 
between the two detectors. We denote this choice by the 
subscript N (z axis Normal to plane). We shall also 
sometimes discuss the P system (z axis in Plane) whose y 
axis is normal to the plane and z axis is in the same 
direction as the x axis in the N system. The careful reader 
will perceive that various signs are undefined in these 
definitions (e.g., one can reverse directions of z and y axes 
in the N system). However, no parity-conserving observ­
able is sensitive to the ambiguities. 

N ow consider the energy correlations between two 
detectors for an e+ e- annihilation event. Clearly, the 
correlation depends on the direction of the beam 
referred to the axis sets we described above; this beam 
direction may be specified by spherical polar angles 
(8', ¢') and so we are led to define a beam-orientated 
energy correlation F~r that is a function of X, 15, 8' and ¢'. 
To be precise, we shall actually not define 8', ¢' exactly in 
this way but rather fix the e+ e- direction and define a 
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fixed set of axes XRYRZR with ZR along the e+ e- direction. 
Then we take the "reference" orientation of the two 
detectors so that XRYRZR coincides with the detector­
defined axis set described in the paragraph above. Any 
orientation of the two detectors is then specified by a 
rotation R acting on the reference orientation. Let R be 
in the standard Euler angle form 

(3.1) 

where R)e) }s a rotation about the Y axis through 
angle e and Rz a rotation about the Z axis. e and ¢ are 
the angles to be used in the specification of F~t 10. For 
un polarized beams, F~t is independent of ¢. The unit 
spin of the photon severely limits the possible de­
pendence of F~t on e and ¢; we now turn to a 
discussion of these constraints. 

Consider the general process 

e + e - --d + 2 + anything, (3.2) 

where we have specialized to the case of point de­
tectors and consider 1 and 2 as particles heading in the 
directions of the two detectors. Working in the virtual 
photon rest frame, let A be the spin component of the 
virtual photon referred to the e+ e- direction as a 
quantization axis, and let p. be the spin component of 
the virtual photon with respect to the "reference" final 
state axes. Then if IX denotes the unmeasured momenta 
and helicities of the final particles, the amplitude for 
e+e - -+ y*-+1+2+anything may be written as 

A).a = I G). di/e)exp( - ip.¢)Hl'a' (3 .3) 
I' 

where G)., Hl'a are vertex functions, which give the 
helicity amplitudes for e+e--+y* and y*-+1+2+any­
thing, respectively. Taking H la = aa' H Oa = ba, H -la = ca' 
and using G 1 = - G _ l' Go = 0 (for massless e±), the 
square of the amplitude (3.3) becomes 

d2 

d(COS;)d¢ oc. ~ {ld~l(e)e -i<l>aa +d~o(e)ba 
+ d~ -1 (e)ei<l> ca l2 

+ Id~ 11 (e)e - i<l> aa + d~ 10(e)ba 
+ d~ 1_I(e) ei<l> ca l2 } , 

(3.4) 

which gives the inclusive cross-section e+ e­
-+ 1 + 2 + anything. For point detectors, one must 

simply multiply it by EIE2 to obtain F~t(X,e,¢). One 
s 

may expand the resulting expression and derive the 
general form for the e and ¢ dependence of F~t. The 
parity in variance of the interaction places some con-

10 !J' = --!J, 4>' = -- 4> relates this to previous description. In (3.9) one 
can use either choice as allowed transformation functions are 
independent of a sign change for !J and 4> 

straints on this form. The constraints take a different 
form depending on whether the Z axis lies in the 12 
plane (as in the P system) or along the normal to it (N 
system). In a P-type system, parity invariance implies 

b =17 b } . . I a_-.: -a Z aXIs In 12pane , 
aa- 17ac- a 

(3.5) 

where 17a = ± 1 is some phase and - IX denotes the state 
obtained by application to IX of the symmetry operator 
S = P Ry(n) [P = parity operator, R/n) a rotation 
through n about the Y direction]. S, of course, leaves 
the directions of 1 and 2 invariant. Combining (3.5) 
and (3.4), one finds 

where Ap through Dp (which, of course, depend on X) 
can be related to bilinear sums over aa' ba, and ca. 

lf now the Z axis is taken along the normal to the 12 
plane, the symmetry operator for the system becomes 
S=PR..(n), so that the constraints from parity In­

variance become 

::: =~:;:} Z axis along normal to 12 plane. (3.7) 

ba-17aba 

Combining (3 .7) and (3.4), one finds 

+ eN sin 2 eN COS2¢N 

+ DN sin2eN sin2¢N· (3.8) 

Comparing (3.6) and (3.8), we see that there are, in 
general, 4 independent beam-oriented energy corre­
lation functions. The specific expansion coefficients in 
the complete energy correlation as a function of the 
directions of the detectors with respect to the beam (or, 
equivalently, at least for the point detector case con­
sidered here, the inclusive differential cross-section for 
e+ e- -+y*-+ 1 + 2 + anything) depend, however, on the 
choice of coordinate system. The results (3.6) and (3.8) 
hold for any choice of orthogonal axes in the 12 planes. 
However, they must be symmetric under the inter­
achange 1f-+2. This constraint may be expressed most 
simply if one chooses one of the axes in the plane along 
the bisector of the angle between the directions of 1 
and 2. In this case, the terms Dp and DN vanish and one 
may write the angular distribution in either the N or P 
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system as 

d2 (J _ 

d(cose)dcP ex <F~t(X, e, cP) ~ T(X) {1 + J(X)P 2(cose) 

+K(x)sin2ecos2cP}. (3.9) 

With the above choice, our previous rotational aver­
aged <F 2(X) is just the function T(X) while moments of 
F~t(X, e, cP) with respect to the orthogonal functions 
P2(cose) and sin2ecos2cP give J and K: 

1 -
0) = 4n J dQ<F~t(X, e, cP) = T(X) 

<P 2(cose) /0) =J(x)/5 (3.10) 

<sin2 e cos 2cP ) / 0 ) =4K(X)/15. 

3.3. Moments of Angular Correlations 

The HI observables discussed in [lJ were of the form 

(3.11) 

where Pi' Pj are unit vectors along the momenta of 
particles i and j and the f were chosen to be the 
Legendre polynomials. The HI give a complete specifi­
cation of the rotationally invariant two-point energy 
correlation function in an event. In [10J and in Sect. 3 
below, we discuss the expansion of the three-point 
energy correlation defined as 

(3.12) 

In this section, we consider another extension of (3.11) 
in which f now depends on the direction of the 
incoming beams, E. We take 

';;' =" Ipillp) f(b- '. '.) 
~f L.. ,p"Pj • 

i,j s 
(3 .13) 

We find that these observables provide information on 
the angular distributions of planar structures in events 
with respect to the beam direction. 

The general analysis of Sect. 3.2 allows us to write 
and f in terms of the linearly independent functions 

f6 =sin2 cPijPlcoScPi) 

ft = sin 2 cPijP 2(COS eN,) Plcos cPij) (3.14) 

f~ = sin 2 cPij sin 2 eNij COS2cPNij PI( cos cPij) , 

where cPij is the angle between particles i andj. eN'j and 
cPN . are the angles which specify the beam direction in 
th~ } N ij coordinate system. This set of axes {xyz} is 

defined as described in Sect. 3.2, but with the directions 
of particles i and j replacing the detector directions of 
the previous discussion. The subscript N indicates that 
the z axis is normal to the plane defined by Pi and Pi' 
The explicit factor sin2 cPij in (3.14) is necessary to make 
the f/ well defined in the limits cP ij = 0 or n. This can be 
seen from the expressions for the beam angular func­
tions in terms of scalar products of E, Pi' and Pj: 

f6 = [l-(Pi ' p)2J Plpi' p) 

ft =[1-1((E· p)2+(E. p/) 

+ 3(E · p)(p( p) (hE)] Plp( p) 

f~ = [2(E · p) (E· p) - ((h· PY 

+ (E· p/)] PI(fJ( Pj)' 

(3.15) 

(3.16) 

which illustrates the necessity of the sin2 cPij factor in 
the definition of f~ to avoid problems at cPij=O or n. 
We define Ei using (3.13) withf~ as taken from (3.14) or 
(3.16). It is clear that the <Ei) share the infrared 
stability of the <HI ) when they are computed in QeD 
perturbation theory. 

Another possible set of observables, which appears 
to be less sensitive to hadron fragmentation than the 
Ei (see below), is defined in analogy with (3.13): 

(3.17) 

The Ei are only independent of the Ei for 1=0 and 
1. The definition (3.17) is singular at sin2cPij=0, for 
k= 1 or 2. For cPij=O, the x axis remains well defined 
(along the Pi' Pj direction) but the y and z axes of the 
N ij system are undefined. In this case, we take the li,2 
to have the values obtained by averaging uniformly 
over all possible directions of the y and z axes in the 
plane perpendicular to Pi' Pj' so that 

It(cPij=O) = -tP2(cosct)Plcosejj) 
-I 
f2(cPij = 0) = P 2(COSctj)PI(cos e j), 

(3.18) 

where ct j is angle between beam direction and the 
particles i or j. 

In the case cPjj = n, an analogous situation pertains 
and only the y axis is well defined. We takelt,2 to have 



248 G. C. Fox and S. Wolfram: Two- and Three-point Energy Correlations in Hadronic e+ e- Annihilation 

the value obtained by averaging over all possible 
directions for the x and z directions, so that 

Jt(<I>ij= n) = - tp 2(cosa;)PI(cos8;) 

n(<I>ij=n)= -P2(cosa;)Plcos8;). 
(3.19) 

Note that in both limits, Jt 2 is proportional to 
P 2(cosa;), giving the only pos~ible non-trivial de­
pendence on a;. 

The s~ cannot be written in a form analogous to 
the HI from which their infrared stability would be 
evident. Their values depend, of course, on the treat­
ment of the singular case sin<l>ij=O. We give evidence 
below that the prescription for this described above is 
correct and renders the s~ infrared stable. It is clear 
that the energy weighting in (3.17) protects the s~ from 
soft infrared divergences. Collinear quarks and gluons 
also give rise to divergences in the differential cross­
section. The s~ can only be infrared stable if they take 
on the same value for divergent configurations in 
which two separate particles are exactly collinear 
(<1>;.=0) and in which a single particle carries their total 
mdmentum. This will be the case with our prescription 
for handling collinear particles only if, in configu­
rations where the particles are nearly collinear, all 
potential divergences are independent of the azimuthal 
directions of the particles with respect to the axis 
defined by the vector sum of their momenta. Any 
dependence on the azimuthal direction will appear in 
the amplitude as terms proportional to }'. k 1.' where k 1. 
is the transverse momentum of one of the particles 
with respect to the total momentum axis. Divergences 
in the amplitude are (up to logarithms) of the form 
dk 1.lk 1.' Hence, any contribution to the amplitude 
which is not independent of azimuthal angle will be 
finite as k 1. -+0. Thus the divergent parts of amplitudes 
for collinear production of particles are azimuthally­
symmetrical, so that (with our prescription) the s~ take 
on the same value for this configuration as when a 
single particle is produced in place of several collinear 
ones. Hence it appears that the moments of the s~ 
should be infrared stable when computed in QCD 
perturbation theory. 

Consider now an event in which three partons are 
produced. Then the angular distribution of the plane 
defined by their momenta with respect to the beam 

. '11 b h . d b ~I I ~' ;:::'1 1;:::'1 I aXIS WI e c aractenze Y ~1 .2 ~o or ~1 .2 ~o. n 
actual events, where the final state consists of hadrons, 
the values of these ratios will approach the free quark 

I!-) 

and gluon results as Vs increases. The S~ therefore 
provide a method for determining the angular distri­
butions of planes of particles with respect to the beam 
direction without requiring the plane to be found by 
minimizing an observable [8], which might well induce 

(- ) 

spurious effects. The S~ give the moments of the 

angular distributions of planes just as the B, described 
in [2] describe the angular distributions of jets. 

The angular distributions of planes in general 
depend both on their polar (8) and azimuthal (<I» angles 
with respect to the beam direction. The polar and 
azimuthal dependences can, of course, be rearranged by 
making different choices of frame (e.g., N or P). One 
might expect that in some frame two jet events should 
contribute on average only to the polar distribution. 
However, while this is clearly the case for pure qq final 
states, it is no longer possible after fragmentation to 
hadrons to choose a frame in which the azimuthal 

~I E,-)I 
dependence vanishes. Hence both ~ 1 and S 2 should be 
considered ; no particular feature of the angular distri­
bution appears to be especially distinguished. 

(-) 

Finally we note that S~ are the Legendre trans-
forms (with respect to X) of the angular terms (3.10) in 
the energy correlation function F~t . Their relation to 
F~t is, therefore, analogous to the relation of the HI to 
the rotationally-averaged F~t. 

3.4. Some Analytical Results for F~' 

For the process e+ e- -+qq, F~t(X, 8, <1» is only nonzero 
at X= ± 1 where the "plane" given by the two detectors 
is undefined. We use the same azimuthally symmetric 
prescription for defining the plane here as we described 
for Sl at sin "' .. = 0 in the previous section. If a is the k '/-") 

angle between the e + e - and qq direction, then the 
~(1 + cos 2 a) = -21 + ±P 2(cosa) angular distribution gives 8 _ 

for the parameters in F~t defined according to (3.10) 

T(X)=b(X-1)+b(X+ 1) 

J(1)=J(-1)= -± 
K(1)=-K(-1)=~. 

(3.20) 

To estimate the modifications to our results when 
the q and q fragment into hadrons, we would usually 
simulate complete hadronic events. We do this in the 
next section but present here a simple estimate for the 
effects of fragmentation of J(X) and K(X) which agrees 
closely with the results from the more complicated 
model. Our simple estimate is obtained by assuming 
that F 2(X) away from X = ± 1 is dominated by a 
complete jet entering one detector and a single hadron 
from the other jet being incident on the second d,,­
tector. The first jet then has an angular distribution 
(1 + cos 2a) with respect to the beam direction, while we 
take the single hadron to be distributed uniformly in 
azimuth about the direction of the jet from which it 
came. This picture leads to the simple predictions 

J qqfragmentation(X) == - ± 
Kqijfragmentation(X) = ~ X 

(3.21) 
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Fig. 8. The beam angular correlation J(X)/5 = (P 2(coseN) defined in 
(3.10) for the processes e+ e- -+qq, e+ e- -+qq(G), and (-+ GGG, in the 
free quark and gluon approximation ("idealized calculation") and for 
simulated hadronic final states. We also show results for e+ e- -+qq 
events obtained from the simple fragmentation model described in 
Sect. 3.4. There is a severe non uniformity in the curves near X = + 1, 
as discussed at the end of Sect. 3.4 [cr., (3.22)]. The figures do not 
attempt to illustrate this phenomenon correctly 

which are in remarkably good agreement with the full 
Monte Carlo simulation of qq fragmentation shown in 
Figs. 8 and 9. Of course, this simple picture predicts 
only the angular correlations J, K(X) and not the 
overall normalization T(X). 

For e+ e- -+qqG, the function T(X) == <F~t(X» is 
given in (2.24). One can also calculate J(X) and K(X) in 
the free quark and gluon approximation to find [at 
O(as)] 

~i.jG(X)JqijG(X) 

== - ~qG(X) + C Jb(l- X) 
4 

~ijG(X) K qijG(X) 

2as 1 2 

-;- (1 + x)(1- X)5 {4(5X + 8X + 5) 

· Iog((l + ; 1'2) 

+ (X - 1) (X 3 - 7X2 -16X -14)} + CKb(l- X), (3.22) 
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Fig. 9. The second independent beam angular correlation 
4K(X)/ 15 = (sin2 eN COS2<PN) for the same processes as given in Fig. 8. 
For both J(X) and K(X), the subscript N on the angles denotes the use 
of the frame where the z axis is perpendicular to plane defined by the 
two particles 

where the coefficients of the delta functions are, 
as usual, infrared divergent constants. For e+ I! ­

-+ (-+ GGG, one also finds 

(3.23) 

while K(X) for this case can be calculated using the 
results of [9]. The analytical results for e+ e- ->qqG 
and (-+GGG are shown in Figs. 8 and 9 for both J(X) 
and K(X). The result J(X) == = ± is a surprisingly com­
mon one [see (3.20)-{3.23)]. We know of no simple 
explanation for this (see Appendix A); it appears to be 
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Table 1. The beam moments <S i) for e+e- -+qij at Vs= 20GeY' 

1=0,2: 
I=O:<S~) 1 =3 : <S~) <S~-S~) 

<5 h), Hadrons 0.032 0.27 
<5 h), FQGA 0 0 
<5 h), HadronS} 
<5 h),FQGA H2/H o< 0.35 

0.001 

0 

( 5 11), Hadrons -0.047 - 0.001 - 0.013 
( 5 11),FQGA -0.05 0 0 

<5~), Hadrons 0.0004 0.06 -0.001 
<5~ ), FQGA 0 0.1 0 

As usual, when not all the energy in the events is included in 
the calculation of the <5~), the value in each event is divided by H 0 
[1]. FQGA denotes the perturbative QCD calculation of the free 
quark and gluon final state 

Table 2. The beam moments <S~) for e+ e- -+qq(G) atVs=20 GeY' 

1= 0,2: 
T=0:<5~) 1 =3 : <5~) <5~ - S~) 

<5 h), Hadrons 0.072 0.36 
<5 h), FQGA 1 0.073 0.15 

"'I 0.09 0.01 8 0.067 <'::0), HadronS} 
"' I H 2/Ho< 0.35 

0.028 O.oI5 0.02 <':: o),FQGA 

< ~II )' Hadrons - 0.044 - 0.0027 -0.015 
<3'11 ), FQGA - 0.048 - 0.0027 -0.0076 
( 5 11), HadrOnS} - 0.0031 -0.0007 - 0.0024 
<SII),FQGA H2 /Ho< 0.35 - 0.0014 - 0.0006 -0.0012 

<5~), Hadrons 0.0007 0.049 -0.002 
<S~ ) , FQGA 0.0008 0.080 - 0.0003 

"'I 0.00022 0.0011 -0.0002 <':: 2), HadronS} 
<5~ ), FQGA H2 /H o< 0.3 5 0.00025 0.00040 0.00001 

As usual, when not all the energy in the events is included in the 
calculation of the <S~ ), the value in each event is divided by Ho [I]. 
FQGA denotes the perturbative QCD calculation of the free quark 
and gluon final state 

Table 3. The beam moments <S~) for e+ e- -+ ( -+GGG at 0"= 
10GeY' 

1=0,2 : 
I - O: <S~ ) 1=3 :<S~) <5r-S~) 

<5 h), Hadrons 0.19 0.69 
<5 h), FQGA 0.22 0.38 

<SII), Hadrons - 0.014 -0.0017 -0.0093 
( 5 11 ), FQGA - 0.04 0.0003 - 0.019 

<S~), Hadrons 0.0008 0.0061 -0.0021 
<S~ ),FQGA 0.008 0.022 0 

As usual, when not all the energy in the events is included in the 
calculation of the <S~ ), the value in each event is divided by Ho 
[1]. FQGA denotes the perturbative QCD calculation of the free 
quark and gluon final state 

"accidental". An isotropic (phase space) model would, 
of course, give zero for J(X) and so the common 
nonzero value of J(X) for the low order QCD processes 
in e+ e- annihilation should provide a useful method 
of identifying them. 

Inspection of (3.22) reverals that (ignoring delta 
function terms) both J(X) and K(X) tend to the values 
given in (3.20) for the pure e+ e- --+qq process (with our 
prescription for defining the final plane) as X--+ ± 1. 
This supports our argument in the last section for the 
infrared stability of 5~; the equality of the qq and qqG 
values for J(X) and K(X) at x= ± 1 will allow the 
infrared divergences to cancel between the contri­
butions of the two final states. Remembering that the 
coefficient of <5(1- X) in T(X) is just CT = 2 L <E; )/s, we 

may form the infrared finite combinations of the 
coefficients of <5(1- X) in J(X) and K(X) : 

- %(C J + CT /4) = 14S(CK - 3CT /8) 

=2\(~E;/S(P2(coscx;)- 1~))) 

= - 2cxs/ 15n , (3.24) 

where CX i is the angle between particle i and the beam. 
The infrared finiteness of these combinations of 
<5(1- X) terms on their own occurs only at O(cxs)' In 
higher orders, only the complete moments <5~) in­
tegrated over all possible final state configurations 
will be infrared finite. It is amusing that the result 
J(X) = - ± for e+ e- --+qqG is only violated in the coef­
ficient of <5(1- X) to O(cx.). 

3.5. Some Results on F~t and its Moments 5~ for 
H adronic Events 

The observables J(x) = <P2(COSON) and K(X) 
= <sin 2 eN COS(2¢N) introduced in Sect. 3.3 are shown 
in Figs. 8 and 9 as a function of X for events of several 
types, both in the free quark and gluon approximation, 
and for simulated hadronic final states. J(X) and K(X) 
completely specify the dependence of F~t on the orien­
tation of the two detectors with respect to the beam 
direction. The most striking feature of the curves in 
Figs. 8 and 9 is the similarity between results from the 
different QCD processes. An isotropic model with 
J(X) = K(X) == 0 would be easy to distinguish from the 
QCD reactions. These figures also confirm that our 
simple model for qq fragmentation reproduces rather 
well the hadron final state angular functions given by 
the full Monte Carlo calculation. The effects of hadron 
fragmentation are minor except for the GGG final state 
and even there the hadron final states show beam 
correlations very different from the isotropic case. 
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In Tables 1 through 3, we give the mean values of 
the moments defined in Sect. 3.3. These are infrared 
stable and probably preferable to J(X) and K(X) dis­
cussed above. The latter have particular problems near 
X = 1 which are properly averaged in the moments. The 
tables give <S~ >, <S~ > and 1 <5~ > = <S~ > - <S~ > . S~ 
is the simplest moment and provides the cleanest tests 
of the theory with the smallest effects from hadron 
fragmentation. In fact, the effects of hadron fragmen­
tation appear to be less severe in S~ than in the 
analogous single energy correlation in B2 discussed in 
[1]. We currently consider S~ 2 as the best way of 
measuring beam angular depe~dence of the energy 
distribution of e+ e- annihilation final states. <S~ > has 
a weighting function P 3(COS X) that is odd in X and so is 
useful for investigating K(X), which is predicted to be 
approximately odd in X. Thus <S~> and <5~ > should 
always be small while <S~ > provides a measure of the 
absolute magnitude of K. We have not discussed the 
simplest odd function <S~ > because of its sensitivity to 
missing particles in incomplete final states observed 
experimentally (recall that <S6> = <H 1> vanishes be­
cause of momentum conservation). Finally the tables 
show 1<5~ ), which is the simplest example of a 
moment observable with an explicit sin 2¢ suppression 
of the X = ± 1 regions. 

Tables 1 and 2 also show results with an H 2 cut 
< 0.35 (applied to the final hadrons) which selects 
"true" 3 jet events. The fact that these results are 
similar to those without the H 2 cut is an indication 
that the beam correlations do not depend importantly 
on the "shapes" of the events. 

4. Three-Detector Energy Correlations 

4.1. F 31. as a Test for Planar Structure 

In this section we consider the three-detector energy 
correlation, defined by 

(4.1) 

where detector i has area 10';1 on which a total momen­
tum Ip;! is incident. We shall consider only the function 
F 3(0' 1' 0' 2'0' 3) obtained by averaging over all positions 
of the detectors that maintain their relative orien­
tation. Thus we ignore the correlations with the beam 
direction that were treated in Sect. 5 for the two 
detector case. The main purpose in considering three 
detector correlations is to find tests for planar momen­
tum configurations. Two particle final states contrib­
ute to the two detector energy correlation function 
only when the angle between the two detectors is near 

180°. On the other hand, three particle final states, as 
from e+ e--+qqG or e+e- -+ ( -+GGG, have no such 
simple signatures in the two detector case. However, 
the momenta in the three particle final state lie in a 
plane and hence the three detector energy correlation 
vanishes for such events unless the detectors them­
selves are nearly coplanar. In order to extract the most 
demanding test of co planarity, we define F 31. as the 
value of the rotationally averaged F 3(0' 1'0' 2' 0' 3) when 
all the three detector directions are mutually ortho­
gonal. We take the three detectors to be circular and of 
equal angular radius cos - 1(15). The normalization of 
F 3 is such that it has the value one for isotropic events. 
Thus the value of F 31. is zero for idealized three jet 
events and one for isotropic events. Hence a measure­
ment of <F 3.L> provides a method for distinguishing 
these two event structures. Of course, the naive pre­
diction that <F 31.> = 0 for three-jet events is only true 
at infinite energy, where there are neither perturb a­
tive nor hadronic corrections. At finite energies which 
are sufficiently large that fragmentation is unim­
portant, one may estimate that <F 31.> = (a; + O(a: ) 
for e+ e- -+qq(GG ... ), while for ( -+GGG(GG ... ), 
<F 3.L> ~ Xas + O(aD. (Analogous results hold for 
(II 1 >.) There are identications that A. and X are or 
order one [4]. Note that the decay ( -+GGGG (which 
gives rise to non-coplanar final states) where ( is, as 
above, a 3 S 1 QQ state, is not forbidden by symmetry 
(as would the corresponding positronium decay) be­
cause the gluons can be antisymmetric in color. Hence, 

one expects that, at values of VS for which fragmen­
tation is unimportant, <F 31.> should be larger on 
resonances than in the continuum by a factor of order 

l ias. For lower VS, the hadronization of the final state 
will modify perturbative predictions for <F 31.>' and 
one must make a model to study the size of the 
changes. We consider the particular question of to 
what extent a measurement of <F 3.L> enables one to 
test for 3 jet decay of the Yand possible higher mass 
heavy quark bound states. In our calculations of the 
effects of fragmentation, we ignore the perturbative 
O(a.) or O(a; ) corrections to the result <F 31.> = 0 for two 
and three jet events. We compare only mechanisms 
that lead to the same single hadron momentum distri­
butions. We found [10] two models that gave the same 
z distributions as e+ e- -+ ( -+GGG. The first was ob­
tained by construction ; we generated hadrons from 
genuine ( -+ GGG events and then randomly rotated 
each hadron in the final state. We term this model 
"isotropic". For the second model, we noted that 
e+e - -+ MM, where each meason M decays into 
3 jets (cf. Sect. 2.5), happens to give essentially the 
same single hadron momentum distribution as 
e+ e- -+ ( -+GGG. This "6 jet" model is, of course, not 
isotropic but it is certainly more so than would be 
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Fig. 10. The mean energy correlation <F 3.J.> between three ortho­
gonal detectors with angular radii cos - 1(0.95)"" 18°, as a function of 

VS, for three classes of processes discussed in the text. At infinite 
energy, coplanar events such as (-+GGG give <F3 J.> =0, while a 
completely isotropic distribution of energy in the final state gives 
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Fig. 11. The mean coplanarity parameter <III > defined in Sect. 6.2 as a 

function of s. At infinite VS, (-GGG gives <II 1> =0, isotropic events 
<III > = 2/9 and "6 jet" ones <II I> ",,0.07 

expected from a GGG final state. In Fig. 10 we plot 
<F 31.) as a function of VS for these three types of 
events. The GGG final state is easily distinguished, even 
at the Ymass, from the more isotropic mechanisms. Of 

course, the discrimination improves as VS increases. 
Although <F 31.) appears to be a very useful experi­

mental observable, we should point out that it is not 
trivial to calculate. We found no simple analogue of 
(2.1) for the two detector case. Thus we calculated 
<F 3J) by doing the angular average (integral) in its 
definition by a simple Monte Carlo technique. Note 
that this integral has to be done separately for each 
event. 

We have chosen to emphasize one particular 
angular configuration for the three detectors: the case 
where they are mutually perpendicular. One can, of 
course, consider other angular separations but we do 
not believe they will lead to qualitatively different 
results. 

4.2. Moments of Three-Detector Energy Correlations 

The two jet form for the HI: 

<HI ) =0 I odd 
(4.2) 

<HI ) = 1 I even 

is a moment analogue of the result for the two detector 
energy correlation: 

F~t(X) =15(1- X) + 15(1 + X) . (4.3) 

It is natural to ask if there is a moment analogue 
for the prediction that the three detector correlation 
function F~t is zero for three particle final states unless 
the detectors are coplanar. In [10], we showed that 
there were such moment analogues but did not discuss 
their relation to F~t. We defined two classes of mo­
ments that vanished for planar events: 

(4.4) 

where the functions S and A are respectively symmetric 
and antisymmetric polynomials in the scalar products 
of the unit vectors Pi in the directions of the particles i. 
The simplest example of the n class of observables has 
S = 1 and was denoted n l ' while the simplest non­
trivial member of the P class (denoted by P1 ) has 
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It is clear from our previous arguments that the 
moments of ils and 'l'A are infrared stable when 
computed in QeD perturbation theory. As discussed 
in [10], we found ill to be the most useful observable 
in that it offered the greater discrimination between 3 
jet and isotropic processes at the Y mass. In Fig. 11 we 

show ( ill > as a function of Vs for the three processes 
discussed in the previous subsection. There are again 
reasonably large differences between the results for 
e + e - ->, -> GGG events and for our models with iso­
tropic ' decay. However, comparison of Figs. 10 and 11 
shows that ( F 31.> is somewhat better than ( ill > at 
distinguishing the processes. ill does have two advan­
tages, however : first , it is much easier to calculate than 
( F 31.>' and further it is not only possible to find easily 
the mean ( ill > but also the distribution 1/ (J d(J/dil1 . 

The latter provides additional discrimination as dis­
cussed in [10]. 

We now describe the relationship of the observ­
abIes ils and 'l'A to F~t ; the analogue to the result that 
the HI are the Legendre moments of F~t. We specialize 
to the idealized case of point detectors and write F~t in 
the rather formal manner 

F~t(Qd1' Qd2' Qd3) 

= 8n S dQ{!(QQd1){!(QQd2){!(QQd3) ' (4.5) 

Here Q and Qdk (k = 1, 2,3) are elements of the rotation 
group. Q runs over all rotations (labeled by 3 Euler 
angles so that S dQ = 8n2) while Qdk is defined so that 
the direction of detector k is given by Qdk Z where Z is 
unit vector in the z direction. We have written (4.5) for 
the case of a continuous energy density {! normalized 
to unity when integrated over independent values of its 
argument (i.e., dropping the redundant azimuthal in­
tegral in dQ), so that 

(4.6) 

and {! = 1/4n for an isotropic event. Of course, for a 
particle event (4.5) is valid with (! as a sum of delta 
functions at the angles of the various particles. We now 
define the multipole moments A~ as in [1] and [10] : 

1 ~ ~ ~ 
A~ = 2n S dQ{!(Q) 17"(Q) (4.7) 

or conversely 

~ ~1+1 I ~ (!(Q)= IA~ - 4- Dmo(Q) 
I,m n 

(4.8) 

where D~m' are the conventional rotation matrices 
which can be written as 

(4.9) 

where 

(4.10) 

is expressed as a product of rotations about the y and z 
axes. 

Substituting (4.8) into (4.5), we use the addition 
theorem for the D matrices to find 

F~t(Qd1 ' Qd2' Qd3) = I S dQD~lmJQ) 
11121, 

m l m 2"' 3 
m'l m2m ] 

(4.11) 

Defining the rotationally invariant three detector mo­
ments I;1 121, by 

(4.12) 

the integral dQ may be expressed in terms of 3 - j 
symbols [11] so that 

(4.13) 

where 

A is a function of general mathematical interest. It is a 
rotationally invariant function of three directions. This 
invariance can be expressed as 

III ~ ~ ~~ ~~ III ~ ~ ~ 

A I 2 ' (RQd1 ' RQd2' RQd3) = A I 2 ' (Qd1' Qd2' Qd3) (4.15) 

for any rotation R.. A is the three-direction analogue of 
the two-direction rotationally-invariant function 
PI(Qi11Qd. Of course, the HI are the two direction 
analogues of TIl121, and F~t can be expressed in terms of 
HI and PI(Qi/ Qd2) in analogy to (6.13). If any I value is 
zero AI l121, and TIl1 21, reduce to P (Q - 1 Q ) and H 

, I d1 d2 I' 
res pecti vel y. 

Note that if 11 + 12 + 13 is even, then Tand A are real 
and invariant under any permutation of indices {k} in 
the Ik and Qdk' On the other hand, if 11 + 12 + 13 is odd, 
then both T and A are purely imaginary and per­
mutations of {k} multiply them by the signature of the 
permutation. 

This fact leads to our first test for planes. If in a 
planar event we choose the x and z axes to be in the 



254 G. C. Fox and S. Wolfram: Two- and Three-point Energy Correlations in Hadronic e+ e- Annihilation 

plane, then the A~ are manifestly purely real and hance 
all Tlll2l3 are real. Therefore, Thl2l3 vanishes for planar 
events if 11 + 12 + 12 is odd. The simplest nontrivial 
constraint corresponds to T 234 =0 and one can easily 
show that 

(4.16) 

The equivalence between P-like tests [in sense of 
(4.4)] and Im(Thl2l3; 11 + 12 + 13 odd) is complete. Note 
that both PA and Im(Tld2l3) are pseudoscalars (i.e., 
change sign on reversal of all the particle momenta) 
while IIs and Re(Tld2l3) are scalars. 

We now show how to obtain observables of the II 
type from our new formalism. We first choose a 
particular configuration for the three detectors with 
detector 1 along the z axis and detector 2 in the xz 
plane: 

Qd1 = 1 

Qd2 =R)82) (4.17) 

Qd3 = R z(<P3)R y(8 3) . 

This makes the degrees of freedom of A manifest 
but loses the elegant symmetry of the original form 
(4.14). We can now express F~t as a Fourier series in the 
azimuthal variable <P3 : 

m 

=2 L (Rerm)cosm<P3 
m ~O 

- 2 L (1m rm) sin m<p 3 ' (4.18) 
m >O 

where 

r m(8 2,83)= L V(21 1 +1)(212+1)(213+1) Thl2 l3 

hl2l3 

(4.19) 

For a planar event, F~t is proportional to a delta 
function at <P3 =0, and inverting the Fourier series 
(4.18) this implies 

Imrm=O (m integer) , 

Rerm=Rerm' (m,m' integer) . 

(4.20) 

(4.21) 

The result (4.20) is just vanishing of Im(Thl2l3) for 
planar events that we have already discussed. Some of 
the information in (4.21) can be turned into new 
moment constraints that are equivalent to IIs=O in 
(6.4). Consider the relation 

(4.22) 

where m1 and m2 differ by an even integer. Multiply 
both sides of (4.22) by d~,0(82)dl2 m I0(83) and integrate 
d(cos82)d(cos83). Using the orthogonality of the d 
matrices, we pick up a finite linear combination of 
Tlll2 l3 (12,13 fixed, 11 varies) on the left hand side. Now 
we can express d~,0(82) as a linear combination of 
d~20(82) with I~ ~ 12 and similarly for 13, (Here we use 
our choice that m1 and m2 differ by an even integer.) It 
follows that the right hand side is also a finite linear 
combination of Tlll2l3 observables and hence (4.22) 
gives rise to a set of finite relations between Re Tl ll2 l3 

for planar events. These relations may be translated 
into constraints of the form II s = O. For example, 
the simplest observable II 1 is obtained from the 
relation Rer2 = Rero on multiplying through by 
d~0(82)d~ 20(83) and integrating. Reference [10J gives 
some of the simpler II observables found in this way as 
linear combinations of the Tl d2l 3 . 

Appendix A: 2+sin2 0N Forever? 

A remarkable feature of the results presented in 
Sect. 4.2 was that four distinct processes gave a 
2+sin28N distribution for the angle 8N between the 
incoming beam direction and the normal to the plane 
defined by the (three-particle) final state :e+ e- --+qqG, 
e+e---+(eS 1 )--+GGG, e+e---+qq<p, where <p is a scalar 
"gluon" and e+ e- --+qq, where the plane in this case is 
taken to have a uniform distribution about the qq 
direction. One may wonder whether this common 
2+sin28N dependence is accidental or has some funda­
mental significance. As we will now describe, our 
tentative conclusion is that it is largely accidental. 

The formalism of Sect. 3.2 shows that a 2 +sin28N 

distribution has a simple interpretation in terms of the 
amplitudes E;, for virtual photons of helicity A to decay 
to a given final state configuration. We work in the 
virtual photon rest frame and quantize the photon spin 
along the normal to the plane defined by the final state 
particles. Then the condition for a 2+sin28N angular 
distribution is 

(A.1) 

This may also be expressed as a constraint on the 
photon polarization amplitude Aii' If z is the normal to 
the final state plane, and the x and yare axes in the 
plane, then (A.1) may be rewritten as 

(A.2) 

Note that gauge invariance for a photon at rest implies 

(A.3) 
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We first discuss the origin of the 2 + sin 2 eN be­
havior in the process e+ e- ->qqG. As mentioned in 
Sect. 3.4, this angular distribution is easy to understand 
in the infrared limit where the virtual quark is nearly 
on shell. Here, the gluon will be distributed uniformly 
in azimuth about the qq direction, while the q and q 
will have a 1 +cos2 e angular distribution with respect 
to the beam direction. In this limit, therefore, 
e+ e- ->qqG behaves like e+ e- ->qq with random plane 
orientation, and the 2+sin 2 eN form follows directly. 
The same result holds for scalar gluons. Unfortunately, 
these arguments cannot be extended away from the 
infrared region where the q and q no longer have a 
1 + cos 2 e angular distribution. In Feynman gauge, one 
finds that for each of the two diagrams contributing to 
e+ e- ->qqG, 

(A.4) 

However, only in the sum of the diagrams does the 
IAol2 term cancel so that the requirement (A.2) is 
satisfied. The fact that all diagrams must be included 
(at least in Feynman gauge) in order to obtain a 
2+sin 2 eN angular distribution for e+ e- ->qq(G) sug­
gests that its appearance there is somewhat "acci­
dental". 

For e+e- -> ( ->GGG, the situation is even more 
mysterious. In this case, two heavy quarks annihilate 
at rest leaving no hint of a 1 + cos 2 e beam distribution 
which might be transmuted into a 2+sin 2 eN plane 
angular distribution. In fact, one can easily show that 
the 2+sin2 eN obtained for ( decay to spin 1 gluons 
does not hold for spin 0 gluons. For scalar gluons, 
Eo = 0, while for pseudoscalar ones, E I = E _ I = O. 

We conclude that we are unable to find a funda­
mental explanation for the widespread 2+sin 2 eN be­
havior. Perhaps the reader can. 

Appendix B: "Scalar QeD" 

In assessing to what extent various measurements 
constitute tests of QeD, it is convenient to compare 
QeD predictions for them with results obtained from 
other theories. In this appendix, we give the forms for 
some of the results discussed in this paper which would 
follow from a theory in which the gluons (4)) are 
colored scalars (see also [12]). This theory has many 
fundamental differences from QeD. In particular, the 
effective qq4> coupling A does not tend logarithmically 
to zero as s increases but rather goes to a constant 
value as a power of s. Nevertheless, this behavior is not 

yet ruled out by deep inelastic scattering measure­
ments. The y* ->qq4> differential cross-section is 

dG A x~ 
dx l dx 2 3n (1-x l )(1-x 2)' 

(B.1) 

Note that this exhibits collinear but not combined 
collinear and soft infrared divergences. Adding in the 
one-loop corrections to y* ->qq, one finds that for 
scalar QeD, the e + e - total cross-section is II 

(B.2) 

From (B.1) one finds that for e+ e- ->qq(4)): 

(B.3) 

while for e+ e- ->qq(G) [1] : 

<Hz) =l- ~:(4nZ-33)~1-1.4(Xs, (B.5) 

<H 3) = !: (1980 - 200n2)~0.43(Xs' (B.6) 

2,1, 1 [ 
<p~t(X) = 3n (X _1)5 (1 + X) 8(1 + X)(2X2 + 18X 

+19)IOgC;X) (B.7) 

+(1-X)(47xZ+160X+105)] +C<5(1-X) , 

< F~t(O) = ~~ (15210g2 -105)~0.076A. (B.8) 

The corresponding results for e+ e- ->qqG are given in 
Sect. 2.2. Equations (B.3) through (B.8) indicate that, 
for a given value of the coupling constant, scalar QeD 
predicts that continuum e+ e- annihilation events 
should be closer to the two-jet limit than is expected 
from QeD. 

11 For colored scalar quarks, but vector gluons, this result becomes 
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Near X= -1, the ( Fi'(x) given in (B.7) becomes 

A r 1 610g(~) -25 1 
3nl(1+x) + 4 + ... , (E.9) 

while around X = + 1, the regular part goes like 

A [1 7 1 
3n 12(1- X) + 30 + ... . (B.10) 

Note the absence of a double logarithmic divergence in 
the integral of (Fi'(x) close to X = ":"' 1. This implies 
[2] that the ( HI) for e+ e- ->qq(</» depend on log(l) for 
large I, rather than log2(l), as in QCD. The ( HI ) at 
large I for the process e+ e- ->qq(</></> ... ) behave like I - aJ­

when summed to all orders in A, in contrast to the 
result ~I - baslogl found in QCD. 
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